
Package: MCDA (via r-universe)
October 24, 2024

Version 0.0.24

Date 2023-03-27

Title Support for the Multicriteria Decision Aiding Process

Author Patrick Meyer, Sébastien Bigaret, Richard Hodgett,
Alexandru-Liviu Olteanu

Maintainer Patrick Meyer <patrick.meyer@imt-atlantique.fr>

Description Support for the analyst in a Multicriteria Decision Aiding
(MCDA) process with algorithms, preference elicitation and data
visualisation functions. Sébastien Bigaret, Richard Hodgett,
Patrick Meyer, Tatyana Mironova, Alexandru Olteanu (2017)
Supporting the multi-criteria decision aiding process : R and
the MCDA package, Euro Journal On Decision Processes, Volume 5,
Issue 1 - 4, pages 169 - 194 <doi:10.1007/s40070-017-0064-1>.

Imports Rglpk, glpkAPI, methods, RColorBrewer, combinat, triangle,
plyr, ggplot2

Suggests Rgraphviz

License EUPL (== 1.1)

Encoding UTF-8

URL https://github.com/paterijk/MCDA

Repository https://paterijk.r-universe.dev

RemoteUrl https://github.com/paterijk/mcda

RemoteRef HEAD

RemoteSha ff40fd048cc3c7f73226e0115c8563feecd8f509

Contents
additiveValueFunctionElicitation . 3
AHP . 5
applyPiecewiseLinearValueFunctionsOnPerformanceTable 7
assignAlternativesToCategoriesByThresholds . 8
ELECTRE3 . 10

1

https://doi.org/10.1007/s40070-017-0064-1
https://github.com/paterijk/MCDA

2 Contents

ELECTREIIIDistillation . 11
LPDMRSort . 12
LPDMRSortIdentifyIncompatibleAssignments . 16
LPDMRSortIdentifyUsedDictatorProfiles . 19
LPDMRSortIdentifyUsedVetoProfiles . 22
LPDMRSortInferenceApprox . 25
LPDMRSortInferenceExact . 27
MARE . 30
MRSort . 32
MRSortIdentifyIncompatibleAssignments . 35
MRSortIdentifyUsedVetoProfiles . 37
MRSortInferenceApprox . 40
MRSortInferenceExact . 42
MRSortInterval . 44
normalizePerformanceTable . 47
pairwiseConsistencyMeasures . 48
plotAlternativesValuesPreorder . 49
plotMARE . 50
plotMRSortSortingProblem . 51
plotPiecewiseLinearValueFunctions . 53
plotRadarPerformanceTable . 54
plotSURE . 56
PROMETHEEI . 57
PROMETHEEII . 58
PROMETHEEOutrankingFlows . 60
PROMETHEEPreferenceIndices . 62
SRMP . 64
SRMPInference . 66
SRMPInferenceApprox . 68
SRMPInferenceApproxFixedLexicographicOrder . 70
SRMPInferenceApproxFixedProfilesNumber . 72
SRMPInferenceFixedLexicographicOrder . 74
SRMPInferenceFixedProfilesNumber . 76
SRMPInferenceNoInconsist . 78
SRMPInferenceNoInconsistFixedLexicographicOrder 80
SRMPInferenceNoInconsistFixedProfilesNumber . 82
SURE . 84
TOPSIS . 86
UTA . 88
UTADIS . 94
UTASTAR . 97
weightedSum . 103

Index 105

additiveValueFunctionElicitation 3

additiveValueFunctionElicitation

Elicitation of a general additive value function.

Description

Elicits a general additive value function from a ranking of alternatives.

Usage

additiveValueFunctionElicitation(performanceTable,
criteriaMinMax, epsilon,
alternativesRanks = NULL,
alternativesPreferences = NULL,
alternativesIndifferences = NULL,
alternativesIDs = NULL,
criteriaIDs = NULL)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

epsilon Numeric value containing the minimal difference in value between two consec-
utive alternatives in the final ranking.

alternativesRanks

Optional vector containing the ranks of the alternatives. The elements are named
according to the IDs of the alternatives. If not present, then at least one of
alternativesPreferences or alternativesIndifferences should be given.

alternativesPreferences

Optional matrix containing the preference constraints on the alternatives. Each
line of the matrix corresponds to a constraint of the type alternative a is strictly
preferred to alternative b. If not present, then either alternativesRanks or alter-
nativesIndifferences should be given.

alternativesIndifferences

Optional matrix containing the indifference constraints on the alternatives. Each
line of the matrix corresponds to a constraint of the type alternative a is indif-
ferent to alternative b. If not present, then either alternativesRanks or alterna-
tivesPreferences should be given.

alternativesIDs

Vector containing IDs of alternatives, according to which the datashould be fil-
tered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

4 additiveValueFunctionElicitation

Value

The function returns a list structured as follows :

optimum The value of the objective function.

valueFunctions A list containing the value functions which have been determined. Each value
function is defined by a matrix of breakpoints, where the first row corresponds
to the abscissa (row labelled "x") and where the second row corresponds to the
ordinate (row labelled "y").

overallValues A vector containing the overall values of the input alternatives.

ranks A vector containing the ranks of the alternatives obtained via the elicited value
functions. Ties method = "min".

Kendall Kendall’s tau between the input ranking and the one obtained via the elicited
value functions.

errors The errors (sigma) which have to be added to the overall values of the alterna-
tives in order to respect the input ranking.

References

Based on the UTA algorithm (E. Jacquet-Lagreze, J. Siskos, Assessing a set of additive utility
functions for multicriteria decision-making, the UTA method, European Journal of Operational Re-
search, Volume 10, Issue 2, 151–164, June 1982) except that the breakpoints of the value functions
are the actual performances of the alternatives on the criteria.

Examples

--
ranking some cars (from original article on UTA by Siskos and Lagreze, 1982)

the separation threshold

epsilon <-0.01

the performance table

performanceTable <- rbind(
c(173, 11.4, 10.01, 10, 7.88, 49500),
c(176, 12.3, 10.48, 11, 7.96, 46700),
c(142, 8.2, 7.30, 5, 5.65, 32100),
c(148, 10.5, 9.61, 7, 6.15, 39150),
c(178, 14.5, 11.05, 13, 8.06, 64700),
c(180, 13.6, 10.40, 13, 8.47, 75700),
c(182, 12.7, 12.26, 11, 7.81, 68593),
c(145, 14.3, 12.95, 11, 8.38, 55000),
c(161, 8.6, 8.42, 7, 5.11, 35200),
c(117, 7.2, 6.75, 3, 5.81, 24800)
)

rownames(performanceTable) <- c(
"Peugeot 505 GR",

AHP 5

"Opel Record 2000 LS",
"Citroen Visa Super E",
"VW Golf 1300 GLS",
"Citroen CX 2400 Pallas",
"Mercedes 230",
"BMW 520",
"Volvo 244 DL",
"Peugeot 104 ZS",
"Citroen Dyane")

colnames(performanceTable) <- c(
"MaximalSpeed",
"ConsumptionTown",
"Consumption120kmh",
"HP",
"Space",
"Price")

ranks of the alternatives

alternativesRanks <- c(1,2,3,4,5,6,7,8,9,10)

names(alternativesRanks) <- row.names(performanceTable)

criteria to minimize or maximize

criteriaMinMax <- c("max","min","min","max","max","min")

names(criteriaMinMax) <- colnames(performanceTable)

x<-additiveValueFunctionElicitation(performanceTable,
criteriaMinMax, epsilon,
alternativesRanks = alternativesRanks)

AHP Analytic Hierarchy Process (AHP) method

Description

AHP is a multi-criteria decision analysis method which was originally developed by Thomas L.
Saaty in 1970s.

Usage

AHP(criteriaWeightsPairwiseComparisons, alternativesPairwiseComparisonsList)

6 AHP

Arguments

criteriaWeightsPairwiseComparisons

Matrix or data frame containing the pairwise comparison matrix for the criteria
weights. Lines and columns are named according to the IDs of the criteria.

alternativesPairwiseComparisonsList

A list containing a matrix or data frame of pairwise comparisons (comparing
alternatives) for each criterion. The elements of the list are named according
to the IDs of the criteria. In each matrix, the lines and the columns are named
according to the IDs of the alternatives.

Value

The function returns a vector containing the AHP score for each alternative.

References

The Analytic Hierarchy Process: Planning, Priority Setting (1980), ISBN 0-07-054371-2, McGraw-
Hill

Examples

style <- t(matrix(c(1,0.25,4,1/6,4,1,4,0.25,0.25,0.25,1,0.2,6,4,5,1),
nrow=4,ncol=4))

colnames(style) = c("Corsa","Clio","Fiesta","Sandero")
rownames(style) = c("Corsa","Clio","Fiesta","Sandero")

reliability <- t(matrix(c(1,2,5,1,0.5,1,3,2,0.2,1/3,1,0.25,1,0.5,4,1),
nrow=4,ncol=4))

colnames(reliability) = c("Corsa","Clio","Fiesta","Sandero")
rownames(reliability) = c("Corsa","Clio","Fiesta","Sandero")

fuel <- t(matrix(c(1,2,4,1,0.5,1,3,2,0.25,1/3,1,0.2,1,0.5,5,1),nrow=4,ncol=4))

colnames(fuel) = c("Corsa","Clio","Fiesta","Sandero")
rownames(fuel) = c("Corsa","Clio","Fiesta","Sandero")

alternativesPairwiseComparisonsList <- list(style=style,
reliability=reliability,
fuel=fuel)

criteriaWeightsPairwiseComparisons <- t(matrix(c(1,0.5,3,2,1,4,1/3,0.25,1),
nrow=3,ncol=3))

colnames(criteriaWeightsPairwiseComparisons) = c("style","reliability","fuel")
rownames(criteriaWeightsPairwiseComparisons) = c("style","reliability","fuel")

overall1 <- AHP(criteriaWeightsPairwiseComparisons,
alternativesPairwiseComparisonsList)

applyPiecewiseLinearValueFunctionsOnPerformanceTable 7

applyPiecewiseLinearValueFunctionsOnPerformanceTable

Applies value functions on a performance table.

Description

Transforms a performance table via given piecewise linear value functions.

Usage

applyPiecewiseLinearValueFunctionsOnPerformanceTable(valueFunctions,
performanceTable,
alternativesIDs = NULL,
criteriaIDs = NULL)

Arguments

valueFunctions A list containing, for each criterion, the piecewise linear value functions defined
by the coordinates of the break points. Each value function is defined by a matrix
of breakpoints, where the first row corresponds to the abscissa (row labelled "x")
and where the second row corresponds to the ordinate (row labelled "y").

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

alternativesIDs

Vector containing IDs of alternatives, according to which the datashould be fil-
tered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

Value

The function returns a performance table which has been transformed through the given value func-
tions.

Examples

the value functions

v<-list(
Price = array(c(30, 0, 16, 0, 2, 0.0875),

dim=c(2,3), dimnames = list(c("x", "y"), NULL)),
Time = array(c(40, 0, 30, 0, 20, 0.025, 10, 0.9),

dim = c(2, 4), dimnames = list(c("x", "y"), NULL)),
Comfort = array(c(0, 0, 1, 0, 2, 0.0125, 3, 0.0125),

dim = c(2, 4), dimnames = list(c("x", "y"), NULL)))

8 assignAlternativesToCategoriesByThresholds

the performance table

performanceTable <- rbind(
c(3,10,1),

c(4,20,2),
c(2,20,0),
c(6,40,0),
c(30,30,3))

rownames(performanceTable) <- c("RER","METRO1","METRO2","BUS","TAXI")

colnames(performanceTable) <- c("Price","Time","Comfort")

the transformed performance table

applyPiecewiseLinearValueFunctionsOnPerformanceTable(v,performanceTable)

assignAlternativesToCategoriesByThresholds

Assign alternatives to categories according to thresholds.

Description

Assign alternatives to categories according to thresholds representing the lower bounds of the cate-
gories.

Usage

assignAlternativesToCategoriesByThresholds(alternativesScores,
categoriesLowerBounds,
alternativesIDs = NULL,
categoriesIDs = NULL)

Arguments

alternativesScores

Vector representing the overall scores of the alternatives. The elements are
named according to the IDs of the alternatives.

categoriesLowerBounds

Vector containing the lower bounds of the categories. An alternative is assigned
to a category if it’s score is higher or equal to the lower bound of the category,
and strictly lower to the lower bound of the category above.

alternativesIDs

Vector containing IDs of alternatives, according to which the datashould be fil-
tered.

categoriesIDs Vector containing IDs of categories, according to which the data should be fil-
tered.

assignAlternativesToCategoriesByThresholds 9

Value

The function returns a vector containing the assignments of the alternatives to the categories.

Examples

the separation threshold

epsilon <-0.05

the performance table

performanceTable <- rbind(
c(3,10,1),
c(4,20,2),
c(2,20,0),
c(6,40,0),
c(30,30,3))

rownames(performanceTable) <- c("RER","METRO1","METRO2","BUS","TAXI")

colnames(performanceTable) <- c("Price","Time","Comfort")

ranks of the alternatives

alternativesAssignments <- c("good","medium","medium","bad","bad")

names(alternativesAssignments) <- row.names(performanceTable)

criteria to minimize or maximize

criteriaMinMax <- c("min","min","max")

names(criteriaMinMax) <- colnames(performanceTable)

number of break points for each criterion

criteriaNumberOfBreakPoints <- c(3,4,4)

names(criteriaNumberOfBreakPoints) <- colnames(performanceTable)

ranks of the categories

categoriesRanks <- c(1,2,3)

names(categoriesRanks) <- c("good","medium","bad")

x<-UTADIS(performanceTable, criteriaMinMax, criteriaNumberOfBreakPoints,
alternativesAssignments, categoriesRanks,0.1)

npt <- applyPiecewiseLinearValueFunctionsOnPerformanceTable(x$valueFunctions,
performanceTable)

10 ELECTRE3

scores <- weightedSum(npt, c(1,1,1))

add a lower bound for the "bad" category

lbs <- c(x$categoriesLBs,0)

names(lbs) <- c(names(x$categoriesLBs),"bad")

assignments<-assignAlternativesToCategoriesByThresholds(scores,lbs)

ELECTRE3 ELimination Et Choice Translating REality - ELECTRE-III

Description

ELECTRE (ELimination Et Choice Translating REality) is an outranking method proposed by
Bernard Roy and his colleagues at SEMA consultancy company. This is the implementation of
ELECTRE-III.

Usage

ELECTRE3(scores,
q,
p,
v,
w)

Arguments

scores Matrix or data frame containing the performance table. Each column corre-
sponds to a criterion, and each row to an alternative.

q Vector containing the indifference thresholds. The elements are named accord-
ing to the IDs of the criteria.

p Vector containing the preference threshold on each of the criteria. The elements
are named according to the IDs of the criteria.

v Vector containing the veto thresholds for each criterion. The elements are named
according to the IDs of the criteria.

w Vector containing the weights of criteria. The elements are named according to
the IDs of the criteria.

Value

The function returns the Concordance, Discordance, Credibility, Dominance, and Scoring tables.

ELECTREIIIDistillation 11

References

Roy, Bernard (1968). "Classement et choix en présence de points de vue multiples (la méthode
ELECTRE)". La Revue d’Informatique et de Recherche Opérationelle (RIRO) (8): 57–75.

Examples

library(MCDA)
scores <- matrix(c(-0.2,-2.3,-2.4,-1,3,9,10,7),

nrow = 4,
dimnames = list(

c("School-A","School-B","School-C", "School-D"),
c("Location","Quality")))

q <- c(0.2, 1)
p <- c(1, 2)
v <- c(3.5, 4)
w <- c(0.25, 0.75)

res <- ELECTRE3(scores, q, p, v, w)
print(res)

ELECTREIIIDistillation

ELECTRE III ranking

Description

This function computes the two ELECTRE III distillations, or rankings.

Usage

ELECTREIIIDistillation(performanceTable,
criteriaWeights,
minMaxcriteria,
preferenceThresholds,
indifferenceThresholds,
vetoThresholds)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

criteriaWeights

Vector containing the weights of the criteria. The elements are named according
to the IDs of the criteria.

12 LPDMRSort

minMaxcriteria Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

preferenceThresholds

Vector containing preference thresholds for each criterion.
indifferenceThresholds

Vector containing indifferences thresholds for each criterion.
vetoThresholds Vector containing veto thresholds for each criterion.

Value

The function returns two lists, one for each distillation.

Examples

performanceTable <- rbind(
c(10,20,5,10,16),
c(0,5,5,16,10),
c(0,10,0,16,7),
c(20,5,10,10,13),
c(20,10,15,10,13),
c(20,10,20,13,13))
rownames(performanceTable) <-c("P1","P2","P3","P4","P5","P6")
colnames(performanceTable) <-c("CRIT1","CRIT2","CRIT3","CRIT4","CRIT5")
vector indicating the direction of the criteria evaluation .
minMaxcriteria <-c("max","max","max","max","max")
names(minMaxcriteria) <- colnames(performanceTable)
criteriaWeights vector
criteriaWeights <- c(3,2,3,1,1)
names(criteriaWeights) <- colnames(performanceTable)

indifferenceThresholds<-c(3,3,3,3,3)
names(indifferenceThresholds) <- colnames(performanceTable)
preferenceThresholds<-c(5,5,5,5,5)
names(preferenceThresholds) <- colnames(performanceTable)
vetoThresholds<-c(11,11,11,11,11)
names(vetoThresholds) <- colnames(performanceTable)

ELECTREIIIDistillation(performanceTable,criteriaWeights,minMaxcriteria,
preferenceThresholds,indifferenceThresholds,
vetoThresholds)

LPDMRSort MRSort that takes into account large performance differences.

Description

MRSort is a simplified ElectreTRI method that uses the pessimistic assignment rule, without indif-
ference or preference thresholds attached to criteria. LPDMRSort considers both a binary discor-
dance and a binary concordance conditions including several interactions between them.

LPDMRSort 13

Usage

LPDMRSort(performanceTable, categoriesLowerProfiles, categoriesRanks,
criteriaWeights, criteriaMinMax, majorityThreshold,
criteriaVetos = NULL, criteriaDictators = NULL,
majorityRule = "M", alternativesIDs = NULL,
criteriaIDs = NULL, categoriesIDs = NULL)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

categoriesLowerProfiles

Matrix containing, in each row, the lower profiles of the categories. The columns
are named according to the criteria, and the rows are named according to the
categories. The index of the row in the matrix corresponds to the rank of the
category.

categoriesRanks

A vector containing the ranks of the categories (1 for the best, with higher values
for increasingly less preferred categories). The vector needs to be named with
the categories names, whereas the ranks need to be a range of values from 1 to
the number of categories.

criteriaWeights

Vector containing the weights of the criteria. The elements are named according
to the IDs of the criteria.

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

majorityThreshold

The cut threshold for the concordance condition. Should be at least half of the
sum of the weights.

criteriaVetos Matrix containing in each row a vector defining the veto values for the lower
profile of the category. NA values mean that no veto is defined. A veto thresh-
old for criterion i and category k represents the performance below which an
alternative is forbidden to outrank the lower profile of category k, and thus is
forbidden to be assigned to the category k. The rows are named according to the
categories, whereas the columns are named according to the criteria.

criteriaDictators

Matrix containing in each row a vector defining the dictator values for the lower
profile of the category. NA values mean that no veto is defined. A dictator
threshold for criterion i and category k represents the performance above which
an alternative is guaranteed to outrank the lower profile of category k, and thus
may no be assigned below category k. The rows are named according to the
categories, whereas the columns are named according to the criteria.

majorityRule String denoting how the vetoes and dictators are combined in order to form the
assignment rule. The values to choose from are "M", "V", "D", "v", "d", "dV",

14 LPDMRSort

"Dv", "dv". "M" corresponds to using only the majority rule without vetoes
or dictators, "V" considers only the vetoes, "D" only the dictators, "v" is like
"V" only that a dictator may invalidate a veto, "d" is like "D" only that a veto
may invalidate a dictator, "dV" is like "V" only that if there is no veto we may
then consider the dictator, "Dv" is like "D" only that when there is no dictator we
may consider the vetoes, while finally "dv" is identical to using both dictator and
vetoes only that when both are active they invalidate each other, so the majority
rule is considered in that case.

alternativesIDs

Vector containing IDs of alternatives, according to which the datashould be fil-
tered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

categoriesIDs Vector containing IDs of categories, according to which the data should be fil-
tered.

Value

The function returns a vector containing the assignments of the alternatives to the categories.

References

Bouyssou, D. and Marchant, T. An axiomatic approach to noncompensatory sorting methods in
MCDM, II: more than two categories. European Journal of Operational Research, 178(1): 246–
276, 2007.

Meyer, P. and Olteanu, A-L. Integrating large positive and negative performance differences in
majority-rule sorting models. European Journal of Operational Research, submitted, 2015.

Examples

the performance table

performanceTable <- rbind(c(10,10,9), c(10,9,10), c(9,10,10), c(9,9,10),
c(9,10,9), c(10,9,9), c(10,10,7), c(10,7,10),
c(7,10,10), c(9,9,17), c(9,17,9), c(17,9,9),
c(7,10,17), c(10,17,7), c(17,7,10), c(7,17,10),
c(17,10,7), c(10,7,17), c(7,9,17), c(9,17,7),
c(17,7,9), c(7,17,9), c(17,9,7), c(9,7,17))

profilesPerformances <- rbind(c(10,10,10),c(0,0,0))

vetoPerformances <- rbind(c(7,7,7),c(0,0,0))

dictatorPerformances <- rbind(c(17,17,17),c(0,0,0))

rownames(performanceTable) <- c("a1", "a2", "a3", "a4", "a5", "a6", "a7",
"a8", "a9", "a10", "a11", "a12", "a13",
"a14", "a15", "a16", "a17", "a18", "a19",
"a20", "a21", "a22", "a23", "a24")

rownames(profilesPerformances) <- c("P","F")

LPDMRSort 15

rownames(vetoPerformances) <- c("P","F")

rownames(dictatorPerformances) <- c("P","F")

colnames(performanceTable) <- c("c1","c2","c3")

colnames(profilesPerformances) <- c("c1","c2","c3")

colnames(vetoPerformances) <- c("c1","c2","c3")

colnames(dictatorPerformances) <- c("c1","c2","c3")

lambda <- 0.5

weights <- c(1/3,1/3,1/3)

names(weights) <- c("c1","c2","c3")

categoriesRanks <-c(1,2)

names(categoriesRanks) <- c("P","F")

criteriaMinMax <- c("max","max","max")

names(criteriaMinMax) <- colnames(performanceTable)

assignments <-rbind(c("P","P","P","F","F","F","F","F","F","F","F","F",
"F","F","F","F","F","F","F","F","F","F","F","F"),
c("P","P","P","F","F","F","P","P","P","P","P","P",
"P","P","P","P","P","P","P","P","P","P","P","P"),
c("P","P","P","F","F","F","F","F","F","F","F","F",
"P","P","P","P","P","P","F","F","F","F","F","F"),
c("P","P","P","F","F","F","P","P","P","P","P","P",
"P","P","P","P","P","P","F","F","F","F","F","F"),
c("P","P","P","F","F","F","F","F","F","P","P","P",
"F","F","F","F","F","F","F","F","F","F","F","F"),
c("P","P","P","F","F","F","F","F","F","P","P","P",
"P","P","P","P","P","P","P","P","P","P","P","P"),
c("P","P","P","F","F","F","F","F","F","P","P","P",
"P","P","P","P","P","P","F","F","F","F","F","F"))

colnames(assignments) <- rownames(performanceTable)

majorityRules <- c("V","D","v","d","dV","Dv","dv")

for(i in 1:7)
{

ElectreAssignments<-LPDMRSort(performanceTable, profilesPerformances,
categoriesRanks,
weights, criteriaMinMax, lambda,
criteriaVetos=vetoPerformances,
criteriaDictators=dictatorPerformances,

16 LPDMRSortIdentifyIncompatibleAssignments

majorityRule = majorityRules[i])

print(all(ElectreAssignments == assignments[i,]))
}

LPDMRSortIdentifyIncompatibleAssignments

Identifies all sets of assignment examples which are incompatible with
the MRSort sorting method extended to handle large performance dif-
ferences.

Description

MRSort is a simplified ElectreTRI method that uses the pessimistic assignment rule, without in-
difference or preference thresholds attached to criteria. LPDMRSort considers both a binary dis-
cordance and a binary concordance conditions including several interactions between them. This
function outputs all (or a fixed number of) sets of incompatible assignment examples ranging in size
from the minimal size and up to a given threshold. The retrieved sets are also not contained in each
other.

Usage

LPDMRSortIdentifyIncompatibleAssignments(performanceTable,
assignments,
categoriesRanks,
criteriaMinMax,
majorityRule = "M",
incompatibleSetsLimit = 100,
largerIncompatibleSetsMargin = 0,
alternativesIDs = NULL,
criteriaIDs = NULL)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

assignments Vector containing the assignments (IDs of the categories) of the alternatives to
the categories. The elements are named according to the alternatives.

categoriesRanks

Vector containing the ranks of the categories. The elements are named according
to the IDs of the categories.

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

LPDMRSortIdentifyIncompatibleAssignments 17

majorityRule String denoting how the vetoes and dictators are combined in order to form the
assignment rule. The values to choose from are "M", "V", "D", "v", "d", "dV",
"Dv", "dv". "M" corresponds to using only the majority rule without vetoes
or dictators, "V" considers only the vetoes, "D" only the dictators, "v" is like
"V" only that a dictator may invalidate a veto, "d" is like "D" only that a veto
may invalidate a dictator, "dV" is like "V" only that if there is no veto we may
then consider the dictator, "Dv" is like "D" only that when there is no dictator we
may consider the vetoes, while finally "dv" is identical to using both dictator and
vetoes only that when both are active they invalidate each other, so the majority
rule is considered in that case.

incompatibleSetsLimit

Pozitive integer denoting the upper limit of the number of sets to be retrieved.
largerIncompatibleSetsMargin

Pozitive integer denoting whether sets larger than the minimal size should be
retrieved, and by what margin. For example, if this is 0 then only sets of the
minimal size will be retrieved, if this is 1 then sets also larger by 1 element will
be retrieved.

alternativesIDs

Vector containing IDs of alternatives, according to which the datashould be fil-
tered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

Value

The function returns NULL if there is a problem, or a list containing a list of incompatible sets of
alternatives as vectors and the status of the execution.

References

Bouyssou, D. and Marchant, T. An axiomatic approach to noncompen-satory sorting methods in
MCDM, II: more than two categories. European Journal of Operational Research, 178(1): 246–
276, 2007.

Meyer, P. and Olteanu, A-L. Integrating large positive and negative performance differences in
majority-rule sorting models. European Journal of Operational Research, submitted , 2015.

Examples

the performance table

performanceTable <- rbind(c(10,10,9), c(10,9,10), c(9,10,10), c(9,9,10),
c(9,10,9), c(10,9,9), c(10,10,7), c(10,7,10),
c(7,10,10), c(9,9,17), c(9,17,9), c(17,9,9),
c(7,10,17), c(10,17,7), c(17,7,10), c(7,17,10),
c(17,10,7), c(10,7,17), c(7,9,17), c(9,17,7),
c(17,7,9), c(7,17,9), c(17,9,7), c(9,7,17),
c(7,7,7))

rownames(performanceTable) <- c("a1", "a2", "a3", "a4", "a5", "a6", "a7",
"a8", "a9", "a10", "a11", "a12", "a13",

18 LPDMRSortIdentifyIncompatibleAssignments

"a14", "a15", "a16", "a17", "a18", "a19",
"a20", "a21", "a22", "a23", "a24", "a25")

colnames(performanceTable) <- c("c1","c2","c3")

assignments <-rbind(c("P","P","P","F","F","F","F","F","F","F","F","F",
"F","F","F","F","F","F","F","F","F","F","F","F","P"),
c("P","P","P","F","F","F","P","P","P","P","P","P",
"P","P","P","P","P","P","P","P","P","P","P","P","P"),
c("P","P","P","F","F","F","F","F","F","F","F","F",
"P","P","P","P","P","P","F","F","F","F","F","F","P"),
c("P","P","P","F","F","F","P","P","P","P","P","P",
"P","P","P","P","P","P","F","F","F","F","F","F","P"),
c("P","P","P","F","F","F","F","F","F","P","P","P",
"F","F","F","F","F","F","F","F","F","F","F","F","P"),
c("P","P","P","F","F","F","F","F","F","P","P","P",
"P","P","P","P","P","P","P","P","P","P","P","P","P"),
c("P","P","P","F","F","F","F","F","F","P","P","P",
"P","P","P","P","P","P","F","F","F","F","F","F","P"))

colnames(assignments) <- rownames(performanceTable)

categoriesRanks <-c(1,2)

names(categoriesRanks) <- c("P","F")

criteriaMinMax <- c("max","max","max")

names(criteriaMinMax) <- colnames(performanceTable)

majorityRules <- c("V","D","v","d","dV","Dv","dv")

for(i in 1:1)# change to 7 in order to perform all tests
{

incompatibleAssignmentsSets<-LPDMRSortIdentifyIncompatibleAssignments(
performanceTable, assignments[i,],
categoriesRanks, criteriaMinMax,
majorityRule = majorityRules[i])

filteredAlternativesIDs <- setdiff(rownames(performanceTable),
incompatibleAssignmentsSets[[1]][1])

x<-LPDMRSortInferenceExact(performanceTable, assignments[i,],
categoriesRanks, criteriaMinMax,
majorityRule = majorityRules[i],
readableWeights = TRUE,
readableProfiles = TRUE,
minmaxLPD = TRUE,
alternativesIDs = filteredAlternativesIDs)

ElectreAssignments<-LPDMRSort(performanceTable, x$profilesPerformances,
categoriesRanks,
x$weights, criteriaMinMax, x$lambda,

LPDMRSortIdentifyUsedDictatorProfiles 19

criteriaVetos=x$vetoPerformances,
criteriaDictators=x$dictatorPerformances,
majorityRule = majorityRules[i],
alternativesIDs = filteredAlternativesIDs)

print(all(ElectreAssignments == assignments[i,filteredAlternativesIDs]))
}

LPDMRSortIdentifyUsedDictatorProfiles

Identify dictator profiles evaluations that have an impact on the final
assignments of MRSort with large performance differences

Description

MRSort is a simplified ELECTRE-TRI approach which assigns alternatives to a set of ordered
categories using delimiting profiles evaluations. In this case, we also take into account large per-
formance differences. This method is used to identify which dictator profiles evaluations have an
impact on the final assignment of at least one of the input alternatives.

Usage

LPDMRSortIdentifyUsedDictatorProfiles(performanceTable, assignments,
categoriesRanks, criteriaMinMax,
majorityThreshold,
criteriaWeights,
profilesPerformances,
dictatorPerformances,
vetoPerformances = NULL,
majorityRule = "D",
alternativesIDs = NULL,
criteriaIDs = NULL)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

assignments A vector containing the category to which each alternative is assigned. The
vector needs to be named using the alternatives IDs.

categoriesRanks

A vector containing the ranks of the categories (1 for the best, with higher values
for increasingly less preferred categories). The vector needs to be named with
the categories names, whereas the ranks need to be a range of values from 1 to
the number of categories.

20 LPDMRSortIdentifyUsedDictatorProfiles

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

majorityThreshold

The majority threshold needed to determine when a coalition of criteria is suffi-
cient in order to validate an outranking relation.

criteriaWeights

Vector containing the weights of the criteria. The elements are named according
to the IDs of the criteria.

profilesPerformances

Matrix containing, in each row, the lower profiles of the categories. The columns
are named according to the criteria, and the rows are named according to the
categories. The index of the row in the matrix corresponds to the rank of the
category.

dictatorPerformances

Matrix containing in each row a vector defining the dictator values for the lower
profile of the category. NA values mean that no dictator is defined. A dictator
threshold for criterion i and category k represents the performance above which
an alternative outranks the lower profile of category k regardless of the size of
the coalition of criteria in favor of this statement. The rows are named according
to the categories, whereas the columns are named according to the criteria.

vetoPerformances

Matrix containing in each row a vector defining the veto values for the lower
profile of the category. NA values mean that no veto is defined. A veto thresh-
old for criterion i and category k represents the performance below which an
alternative is forbidden to outrank the lower profile of category k, and thus is
forbidden to be assigned to the category k. The rows are named according to the
categories, whereas the columns are named according to the criteria. By default
no veto profiles are needed.

majorityRule String denoting how the vetoes and dictators are combined in order to form the
assignment rule. The values to choose from are "D", "v", "d", "dV", "Dv",
"dv". "D" considers only the dictators, "v" is like "V" only that a dictator may
invalidate a veto, "d" is like "D" only that a veto may invalidate a dictator, "dV"
is like "V" only that if there is no veto we may then consider the dictator, "Dv"
is like "D" only that when there is no dictator we may consider the vetoes, while
finally "dv" is identical to using both dictator and vetoes only that when both are
active they invalidate each other, so the majority rule is considered in that case.

alternativesIDs

Vector containing IDs of alternatives, according to which the datashould be fil-
tered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

Value

The function returns a matrix containing TRUE/FALSE inficators for each evaluation of the veto
profiles.

LPDMRSortIdentifyUsedDictatorProfiles 21

Examples

the performance table

performanceTable <- rbind(
c(1,27,1),
c(6,20,1),
c(2,20,0),
c(6,40,0),
c(30,10,3))

rownames(performanceTable) <- c("RER","METRO1","METRO2","BUS","TAXI")

colnames(performanceTable) <- c("Price","Time","Comfort")

lower profiles of the categories (best category in the first position of the list)

categoriesLowerProfiles <- rbind(c(3, 11, 3),c(7, 25, 2),c(NA,NA,NA))

colnames(categoriesLowerProfiles) <- colnames(performanceTable)

rownames(categoriesLowerProfiles)<-c("Good","Medium","Bad")

the order of the categories, 1 being the best

categoriesRanks <-c(1,2,3)

names(categoriesRanks) <- c("Good","Medium","Bad")

criteria to minimize or maximize

criteriaMinMax <- c("min","min","max")

names(criteriaMinMax) <- colnames(performanceTable)

dictators

criteriaDictators <- rbind(c(1, 1, -1),c(1, 20, 0),c(NA,NA,NA))

colnames(criteriaDictators) <- colnames(performanceTable)
rownames(criteriaDictators) <- c("Good","Medium","Bad")

vetos

criteriaVetos <- rbind(c(9, 50, 5),c(50, 50, 5),c(NA,NA,NA))

colnames(criteriaVetos) <- colnames(performanceTable)
rownames(criteriaVetos) <- c("Good","Medium","Bad")

weights

criteriaWeights <- c(1/6,3/6,2/6)

22 LPDMRSortIdentifyUsedVetoProfiles

names(criteriaWeights) <- colnames(performanceTable)

assignments

assignments <- c("Good","Medium","Bad","Bad","Bad")

LPDMRSortIndetifyUsedVetoProfiles

used<-LPDMRSortIdentifyUsedDictatorProfiles(performanceTable, assignments,
categoriesRanks, criteriaMinMax,
0.5, criteriaWeights,
categoriesLowerProfiles,
criteriaDictators,
criteriaVetos,
"dv")

LPDMRSortIdentifyUsedVetoProfiles

Identify veto profiles evaluations that have an impact on the final as-
signments of MRSort with large performance differences

Description

MRSort is a simplified ELECTRE-TRI approach which assigns alternatives to a set of ordered
categories using delimiting profiles evaluations. In this case, we also take into account large perfor-
mance differences. This method is used to identify which veto profiles evaluations have an impact
on the final assignment of at least one of the input alternatives.

Usage

LPDMRSortIdentifyUsedVetoProfiles(performanceTable, assignments,
categoriesRanks, criteriaMinMax,
majorityThreshold,
criteriaWeights,
profilesPerformances,
vetoPerformances,
dictatorPerformances = NULL,
majorityRule = "V",
alternativesIDs = NULL,
criteriaIDs = NULL)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

LPDMRSortIdentifyUsedVetoProfiles 23

assignments A vector containing the category to which each alternative is assigned. The
vector needs to be named using the alternatives IDs.

categoriesRanks

A vector containing the ranks of the categories (1 for the best, with higher values
for increasingly less preferred categories). The vector needs to be named with
the categories names, whereas the ranks need to be a range of values from 1 to
the number of categories.

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

majorityThreshold

The majority threshold needed to determine when a coalition of criteria is suffi-
cient in order to validate an outranking relation.

criteriaWeights

Vector containing the weights of the criteria. The elements are named according
to the IDs of the criteria.

profilesPerformances

Matrix containing, in each row, the lower profiles of the categories. The columns
are named according to the criteria, and the rows are named according to the
categories. The index of the row in the matrix corresponds to the rank of the
category.

vetoPerformances

Matrix containing in each row a vector defining the veto values for the lower
profile of the category. NA values mean that no veto is defined. A veto thresh-
old for criterion i and category k represents the performance below which an
alternative is forbidden to outrank the lower profile of category k, and thus is
forbidden to be assigned to the category k. The rows are named according to the
categories, whereas the columns are named according to the criteria.

dictatorPerformances

Matrix containing in each row a vector defining the dictator values for the lower
profile of the category. NA values mean that no dictator is defined. A dictator
threshold for criterion i and category k represents the performance above which
an alternative outranks the lower profile of category k regardless of the size of
the coalition of criteria in favor of this statement. The rows are named according
to the categories, whereas the columns are named according to the criteria. By
default no dictator profiles are needed for this method.

majorityRule String denoting how the vetoes and dictators are combined in order to form the
assignment rule. The values to choose from are "V", "v", "d", "dV", "Dv", "dv".
"V" considers only the vetoes, "v" is like "V" only that a dictator may invalidate
a veto, "d" is like "D" only that a veto may invalidate a dictator, "dV" is like
"V" only that if there is no veto we may then consider the dictator, "Dv" is like
"D" only that when there is no dictator we may consider the vetoes, while finally
"dv" is identical to using both dictator and vetoes only that when both are active
they invalidate each other, so the majority rule is considered in that case.

alternativesIDs

Vector containing IDs of alternatives, according to which the datashould be fil-
tered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

24 LPDMRSortIdentifyUsedVetoProfiles

Value

The function returns a matrix containing TRUE/FALSE inficators for each evaluation of the veto
profiles.

Examples

the performance table

performanceTable <- rbind(
c(1,27,1),
c(6,20,1),
c(2,20,0),
c(6,40,0),
c(30,10,3))

rownames(performanceTable) <- c("RER","METRO1","METRO2","BUS","TAXI")

colnames(performanceTable) <- c("Price","Time","Comfort")

lower profiles of the categories (best category in the first position of the list)

categoriesLowerProfiles <- rbind(c(3, 11, 3),c(7, 25, 2),c(NA,NA,NA))

colnames(categoriesLowerProfiles) <- colnames(performanceTable)

rownames(categoriesLowerProfiles)<-c("Good","Medium","Bad")

the order of the categories, 1 being the best

categoriesRanks <-c(1,2,3)

names(categoriesRanks) <- c("Good","Medium","Bad")

criteria to minimize or maximize

criteriaMinMax <- c("min","min","max")

names(criteriaMinMax) <- colnames(performanceTable)

dictators

criteriaDictators <- rbind(c(1, 1, -1),c(1, 20, 0),c(NA,NA,NA))

colnames(criteriaDictators) <- colnames(performanceTable)
rownames(criteriaDictators) <- c("Good","Medium","Bad")

vetos

criteriaVetos <- rbind(c(9, 50, 5),c(50, 50, 5),c(NA,NA,NA))

colnames(criteriaVetos) <- colnames(performanceTable)
rownames(criteriaVetos) <- c("Good","Medium","Bad")

LPDMRSortInferenceApprox 25

weights

criteriaWeights <- c(1/6,3/6,2/6)

names(criteriaWeights) <- colnames(performanceTable)

assignments

assignments <- c("Good","Medium","Bad","Bad","Bad")

LPDMRSortIndetifyUsedVetoProfiles

used<-LPDMRSortIdentifyUsedVetoProfiles(performanceTable, assignments,
categoriesRanks, criteriaMinMax,
0.5, criteriaWeights,
categoriesLowerProfiles,
criteriaVetos,
criteriaDictators,
"dv")

LPDMRSortInferenceApprox

Identification of profiles, weights, majority threshold, veto and dictator
thresholds for LPDMRSort using a genetic algorithm.

Description

MRSort is a simplified ElectreTRI method that uses the pessimistic assignment rule, without in-
difference or preference thresholds attached to criteria. LPDMRSort considers both a binary dis-
cordance and a binary concordance conditions including several interactions between them. The
identification of the profiles, weights, majority threshold and veto thresholds is done by taking into
account assignment examples.

Usage

LPDMRSortInferenceApprox(performanceTable, criteriaMinMax, categoriesRanks, assignments,
majorityRules = c("M","V","D","v","d","dV","Dv","dv"),
alternativesIDs = NULL, criteriaIDs = NULL,

timeLimit = 60, populationSize = 20, mutationProb = 0.1)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

26 LPDMRSortInferenceApprox

assignments Vector containing the assignments (IDs of the categories) of the alternatives to
the categories. The elements are named according to the alternatives.

categoriesRanks

Vector containing the ranks of the categories. The elements are named according
to the IDs of the categories.

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

majorityRules A vector containing the different type of majority rules to be considered ("M",
"V", "D", "v", "d", "dV", "Dv", "dv"). "M" corresponds to using only the ma-
jority rule without vetoes or dictators, "V" considers only the vetoes, "D" only
the dictators, "v" is like "V" only that a dictator may invalidate a veto, "d" is like
"D" only that a veto may invalidate a dictator, "dV" is like "V" only that if there
is no veto we may then consider the dictator, "Dv" is like "D" only that when
there is no dictator we may consider the vetoes, while finally "dv" is identical
to using both dictator and vetoes only that when both are active they invalidate
each other, so the majority rule is considered in that case.

alternativesIDs

Vector containing IDs of alternatives, according to which the data should be
filtered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.
timeLimit Allows to fix a time limit of the execution, in seconds (default 60).
populationSize Allows to change the size of the population used by the genetic algorithm (de-

fault 20).
mutationProb Allows to change the mutation probability used by the genetic algorithm (default

0.1).

Value

The function returns a list containing:

majorityThreshold

The inferred majority threshold (single numeric value).
criteriaWeights

The inferred criteria weights (a vector named with the criteria IDs).
majorityRule A string corresponding to the inferred majority rule (one of "M", "V", "D", "v",

"d", "dV", "Dv", "dv").
profilesPerformances

The inferred category limits (a matrix with the column names given by the cri-
teria IDs and the rownames given by the upper categories each profile delimits).

vetoPerformances

The inferred vetoes (a matrix with the column names given by the criteria IDs
and the rownames given by the categories to which each profile applies).

dictatorPerformances

The inferred dictators (a matrix with the column names given by the criteria IDs
and the rownames given by the categories to which each profile applies).

fitness The classification accuracy of the inferred model (from 0 to 1).

LPDMRSortInferenceExact 27

References

Bouyssou, D. and Marchant, T. An axiomatic approach to noncompen- satory sorting methods in
MCDM, II: more than two categories. European Journal of Operational Research, 178(1): 246–276,
2007.

no reference yet for the algorithmic approach; one should become available in 2018

Examples

performanceTable <- rbind(c(10,10,9),c(10,9,10),c(9,10,10),c(9,9,10),c(9,10,9),c(10,9,9),
c(10,10,7),c(10,7,10),c(7,10,10),c(9,9,17),c(9,17,9),c(17,9,9),

c(7,10,17),c(10,17,7),c(17,7,10),c(7,17,10),c(17,10,7),c(10,7,17),
c(7,9,17),c(9,17,7),c(17,7,9),c(7,17,9),c(17,9,7),c(9,7,17))

rownames(performanceTable) <- c("a1", "a2", "a3", "a4", "a5", "a6", "a7", "a8", "a9", "a10", "a11",
"a12", "a13", "a14", "a15", "a16", "a17", "a18", "a19", "a20",

"a21", "a22", "a23", "a24")

colnames(performanceTable) <- c("c1","c2","c3")

assignments <-c("P","P","P","F","F","F","F","F","F","P","P","P","P","P","P","P","P","P","F","F",
"F","F","F","F")

names(assignments) <- rownames(performanceTable)

categoriesRanks <- c(1,2)

names(categoriesRanks) <- c("P","F")

criteriaMinMax <- c("max","max","max")

names(criteriaMinMax) <- colnames(performanceTable)

set.seed(1)

x<-LPDMRSortInferenceApprox(performanceTable, criteriaMinMax, categoriesRanks, assignments,
majorityRules = c("dV","Dv","dv"),
timeLimit = 180, populationSize = 30,
alternativesIDs = c("a1","a2","a3","a4","a5","a6","a7"))

LPDMRSortInferenceExact

Identification of profiles, weights, majority threshold and veto and dic-
tator thresholds for the MRSort sorting approach extended to handle
large performance differences.

28 LPDMRSortInferenceExact

Description

MRSort is a simplified ElectreTRI method that uses the pessimistic assignment rule, without in-
difference or preference thresholds attached to criteria. LPDMRSort considers both a binary dis-
cordance and a binary concordance conditions including several interactions between them. The
identification of the profiles, weights, majority threshold and veto and dictator thresholds are done
by taking into account assignment examples.

Usage

LPDMRSortInferenceExact(performanceTable, assignments,
categoriesRanks, criteriaMinMax,
majorityRule = "M", readableWeights = FALSE,
readableProfiles = FALSE, minmaxLPD = FALSE,
alternativesIDs = NULL, criteriaIDs = NULL)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

assignments Vector containing the assignments (IDs of the categories) of the alternatives to
the categories. The elements are named according to the alternatives.

categoriesRanks

Vector containing the ranks of the categories. The elements are named according
to the IDs of the categories.

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

majorityRule String denoting how the vetoes and dictators are combined in order to form the
assignment rule. The values to choose from are "M", "V", "D", "v", "d", "dV",
"Dv", "dv". "M" corresponds to using only the majority rule without vetoes
or dictators, "V" considers only the vetoes, "D" only the dictators, "v" is like
"V" only that a dictator may invalidate a veto, "d" is like "D" only that a veto
may invalidate a dictator, "dV" is like "V" only that if there is no veto we may
then consider the dictator, "Dv" is like "D" only that when there is no dictator we
may consider the vetoes, while finally "dv" is identical to using both dictator and
vetoes only that when both are active they invalidate each other, so the majority
rule is considered in that case.

readableWeights

Boolean parameter indicating whether the weights are to be spaced more evenly
or not.

readableProfiles

Boolean parameter indicating whether the profiles are to be spaced more evenly
or not.

minmaxLPD Boolean parameter indicating whether the veto thresholds are to be minimized
(or maximized if lower criteria values are preferred) while the dictator thresholds
are to be maximized (or minimized if lower criteria values are preferred).

LPDMRSortInferenceExact 29

alternativesIDs

Vector containing IDs of alternatives, according to which the data should be
filtered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

Value

The function returns a list structured as follows :

lambda The majority threshold.

weights A vector containing the weights of the criteria. The elements are named accord-
ing to the criteria IDs.

profilesPerformances

A matrix containing the lower profiles of the categories. The columns are named
according to the criteria, whereas the rows are named according to the cate-
gories. The lower profile of the lower category can be considered as a dummy
profile.

vetoPerformances

A matrix containing the veto profiles of the categories. The columns are named
according to the criteria, whereas the rows are named according to the cate-
gories. The veto profile of the lower category can be considered as a dummy
profile.

solverStatus The solver status as given by glpk.

References

Bouyssou, D. and Marchant, T. An axiomatic approach to noncompen- satory sorting methods in
MCDM, II: more than two categories. European Journal of Operational Research, 178(1): 246–276,
2007.

Meyer, P. and Olteanu, A-L. Integrating large positive and negative performance differences in
majority-rule sorting models. European Journal of Operational Research, submitted, 2015.

Examples

the performance table

performanceTable <- rbind(c(10,10,9), c(10,9,10), c(9,10,10), c(9,9,10),
c(9,10,9), c(10,9,9), c(10,10,7), c(10,7,10),
c(7,10,10), c(9,9,17), c(9,17,9), c(17,9,9),
c(7,10,17), c(10,17,7), c(17,7,10), c(7,17,10),
c(17,10,7), c(10,7,17), c(7,9,17), c(9,17,7),
c(17,7,9), c(7,17,9), c(17,9,7), c(9,7,17))

rownames(performanceTable) <- c("a1", "a2", "a3", "a4", "a5", "a6", "a7",
"a8", "a9", "a10", "a11", "a12", "a13",
"a14", "a15", "a16", "a17", "a18", "a19",
"a20", "a21", "a22", "a23", "a24")

colnames(performanceTable) <- c("c1","c2","c3")

30 MARE

categoriesRanks <-c(1,2)

names(categoriesRanks) <- c("P","F")

criteriaMinMax <- c("max","max","max")

names(criteriaMinMax) <- colnames(performanceTable)

assignments <-rbind(c("P","P","P","F","F","F","F","F","F","F","F","F",
"F","F","F","F","F","F","F","F","F","F","F","F"),
c("P","P","P","F","F","F","P","P","P","P","P","P",
"P","P","P","P","P","P","P","P","P","P","P","P"),
c("P","P","P","F","F","F","F","F","F","F","F","F",
"P","P","P","P","P","P","F","F","F","F","F","F"),
c("P","P","P","F","F","F","P","P","P","P","P","P",
"P","P","P","P","P","P","F","F","F","F","F","F"),
c("P","P","P","F","F","F","F","F","F","P","P","P",
"F","F","F","F","F","F","F","F","F","F","F","F"),
c("P","P","P","F","F","F","F","F","F","P","P","P",
"P","P","P","P","P","P","P","P","P","P","P","P"),
c("P","P","P","F","F","F","F","F","F","P","P","P",
"P","P","P","P","P","P","F","F","F","F","F","F"))

colnames(assignments) <- rownames(performanceTable)

majorityRules <- c("V","D","v","d","dV","Dv","dv")

for(i in 1:1)# change to 7 in order to perform all tests
{

x<-LPDMRSortInferenceExact(performanceTable, assignments[i,],
categoriesRanks, criteriaMinMax,
majorityRule = majorityRules[i],
readableWeights = TRUE,
readableProfiles = TRUE,
minmaxLPD = TRUE)

ElectreAssignments<-LPDMRSort(performanceTable, x$profilesPerformances,
categoriesRanks,
x$weights, criteriaMinMax, x$lambda,
criteriaVetos=x$vetoPerformances,
criteriaDictators=x$dictatorPerformances,
majorityRule = majorityRules[i])

print(x)

print(all(ElectreAssignments == assignments[i,]))
}

MARE Multi-Attribute Range Evaluations (MARE)

MARE 31

Description

MARE is a multi-criteria decision analysis method which was originally developed by Hodgett et
al. in 2014.

Usage

MARE(performanceTableMin,
performanceTable,
performanceTableMax,
criteriaWeights,
criteriaMinMax,
alternativesIDs = NULL,
criteriaIDs = NULL)

Arguments

performanceTableMin

Matrix or data frame containing the minimum performance table. Each column
corresponds to an alternative, and each row to a criterion. Columns (resp. rows)
must be named according to the IDs of the alternatives (resp. criteria).

performanceTable

Matrix or data frame containing the most likely performance table. Each column
corresponds to an alternative, and each row to a criterion. Columns (resp. rows)
must be named according to the IDs of the alternatives (resp. criteria).

performanceTableMax

Matrix or data frame containing the maximum performance table. Each column
corresponds to an alternative, and each row to a criterion. Columns (resp. rows)
must be named according to the IDs of the alternatives (resp. criteria).

criteriaWeights

Vector containing the weights of the criteria. The elements are named according
to the IDs of the criteria.

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

alternativesIDs

Vector containing IDs of alternatives, according to which the data should be
filtered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

Value

The function returns an element of type mare which contains the MARE scores for each alternative.

References

Richard E. Hodgett, Elaine B. Martin, Gary Montague, Mark Talford (2014). Handling uncertain
decisions in whole process design. Production Planning & Control, Volume 25, Issue 12, 1028-
1038.

32 MRSort

Examples

performanceTableMin <- t(matrix(c(78,87,79,19,8,68,74,8,90,89,74.5,9,20,81,30),
nrow=3,ncol=5, byrow=TRUE))

performanceTable <- t(matrix(c(80,87,86,19,8,70,74,10,90,89,75,9,33,82,30),
nrow=3,ncol=5, byrow=TRUE))

performanceTableMax <- t(matrix(c(81,87,95,19,8,72,74,15,90,89,75.5,9,36,84,30),
nrow=3,ncol=5, byrow=TRUE))

row.names(performanceTable) <- c("Yield","Toxicity","Cost","Separation","Odour")
colnames(performanceTable) <- c("Route One","Route Two","Route Three")
row.names(performanceTableMin) <- row.names(performanceTable)
colnames(performanceTableMin) <- colnames(performanceTable)
row.names(performanceTableMax) <- row.names(performanceTable)
colnames(performanceTableMax) <- colnames(performanceTable)

weights <- c(0.339,0.077,0.434,0.127,0.023)
names(weights) <- row.names(performanceTable)

criteriaMinMax <- c("max", "max", "max", "max", "max")
names(criteriaMinMax) <- row.names(performanceTable)

overall1 <- MARE(performanceTableMin,
performanceTable,
performanceTableMax,
weights,
criteriaMinMax)

overall2 <- MARE(performanceTableMin,
performanceTable,
performanceTableMax,
weights,
criteriaMinMax,
alternativesIDs = c("Route Two","Route Three"),
criteriaIDs = c("Yield","Toxicity","Cost","Separation"))

MRSort Electre TRI-like sorting method axiomatized by Bouyssou and
Marchant.

Description

This simplification of the Electre TRI method uses the pessimistic assignment rule, without in-
difference or preference thresholds attached to criteria. Only a binary discordance condition is
considered, i.e. a veto forbids an outranking in any possible concordance situation, or not.

Usage

MRSort(performanceTable, categoriesLowerProfiles,
categoriesRanks, criteriaWeights, criteriaMinMax,

MRSort 33

majorityThreshold, criteriaVetos = NULL,
alternativesIDs = NULL, criteriaIDs = NULL,
categoriesIDs = NULL)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

categoriesLowerProfiles

Matrix containing, in each row, the lower profiles of the categories. The columns
are named according to the criteria, and the rows are named according to the
categories. The index of the row in the matrix corresponds to the rank of the
category.

categoriesRanks

A vector containing the ranks of the categories (1 for the best, with higher values
for increasingly less preferred categories). The vector needs to be named with
the categories names, whereas the ranks need to be a range of values from 1 to
the number of categories.

criteriaWeights

Vector containing the weights of the criteria. The elements are named according
to the IDs of the criteria.

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

majorityThreshold

The cut threshold for the concordance condition. Should be at least half of the
sum of the weights.

criteriaVetos Matrix containing in each row a vector defining the veto values for the lower
profile of the category. NA values mean that no veto is defined. A veto thresh-
old for criterion i and category k represents the performance below which an
alternative is forbidden to outrank the lower profile of category k, and thus is
forbidden to be assigned to the category k. The rows are named according to the
categories, whereas the columns are named according to the criteria.

alternativesIDs

Vector containing IDs of alternatives, according to which the datashould be fil-
tered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

categoriesIDs Vector containing IDs of categories, according to which the data should be fil-
tered.

Value

The function returns a vector containing the assignments of the alternatives to the categories.

34 MRSort

References

Bouyssou, D. and Marchant, T. An axiomatic approach to noncompen- satory sorting methods in
MCDM, II: more than two categories. European Journal of Operational Research, 178(1): 246–276,
2007.

Examples

the performance table

performanceTable <- rbind(
c(1,10,1),
c(4,20,2),
c(2,20,0),
c(6,40,0),
c(30,30,3))

rownames(performanceTable) <- c("RER","METRO1","METRO2","BUS","TAXI")

colnames(performanceTable) <- c("Price","Time","Comfort")

lower profiles of the categories
(best category in the first position of the list)

categoriesLowerProfiles <- rbind(c(3, 11, 3),c(7, 25, 2),c(NA,NA,NA))

colnames(categoriesLowerProfiles) <- colnames(performanceTable)

rownames(categoriesLowerProfiles)<-c("Good","Medium","Bad")

the order of the categories, 1 being the best

categoriesRanks <-c(1,2,3)

names(categoriesRanks) <- c("Good","Medium","Bad")

criteria to minimize or maximize

criteriaMinMax <- c("min","min","max")

names(criteriaMinMax) <- colnames(performanceTable)

vetos

criteriaVetos <- rbind(c(10, NA, NA),c(NA, NA, 1),c(NA,NA,NA))

colnames(criteriaVetos) <- colnames(performanceTable)
rownames(criteriaVetos) <- c("Good","Medium","Bad")

weights

criteriaWeights <- c(1,3,2)

MRSortIdentifyIncompatibleAssignments 35

names(criteriaWeights) <- colnames(performanceTable)

MRSort

assignments<-MRSort(performanceTable, categoriesLowerProfiles,
categoriesRanks,criteriaWeights,
criteriaMinMax, 3,
criteriaVetos = criteriaVetos)

print(assignments)

un peu de filtrage

assignments<-MRSort(performanceTable, categoriesLowerProfiles,
categoriesRanks, criteriaWeights,
criteriaMinMax, 2,
categoriesIDs = c("Medium","Bad"),
criteriaIDs = c("Price","Time"),
alternativesIDs = c("RER", "BUS"))

print(assignments)

MRSortIdentifyIncompatibleAssignments

Identifies all sets of assignment examples which are incompatible with
the MRSort method.

Description

This MRSort method, which is a simplification of the Electre TRI method, uses the pessimistic
assignment rule, without indifference or preference thresholds attached to criteria. Only a binary
discordance condition is considered, i.e. a veto forbids an outranking in any possible concordance
situation, or not. This function outputs for all (or a fixed number of) sets of incompatible assignment
examples ranging in size from the minimal size and up to a given threshold. The retrieved sets are
also not contained in each other.

Usage

MRSortIdentifyIncompatibleAssignments(performanceTable,
assignments,
categoriesRanks,
criteriaMinMax, veto = FALSE,
incompatibleSetsLimit = 100,
largerIncompatibleSetsMargin = 0,
alternativesIDs = NULL,
criteriaIDs = NULL)

36 MRSortIdentifyIncompatibleAssignments

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

assignments Vector containing the assignments (IDs of the categories) of the alternatives to
the categories. The elements are named according to the alternatives.

categoriesRanks

Vector containing the ranks of the categories. The elements are named according
to the IDs of the categories.

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

veto Boolean parameter indicating whether veto profiles are being used by the model
or not.

incompatibleSetsLimit

Pozitive integer denoting the upper limit of the number of sets to be retrieved.
largerIncompatibleSetsMargin

Pozitive integer denoting whether sets larger than the minimal size should be
retrieved, and by what margin. For example, if this is 0 then only sets of the
minimal size will be retrieved, if this is 1 then sets also larger by 1 element will
be retrieved.

alternativesIDs

Vector containing IDs of alternatives, according to which the datashould be fil-
tered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

Value

The function returns NULL if there is a problem, or a list containing a list of incompatible sets of
alternatives as vectors and the status of the execution.

References

Bouyssou, D. and Marchant, T. An axiomatic approach to noncompen- satory sorting methods in
MCDM, II: more than two categories. European Journal of Operational Research, 178(1): 246–276,
2007.

Examples

performanceTable <- rbind(c(10,10,9), c(10,9,10), c(9,10,10), c(9,9,10),
c(9,10,9), c(10,9,9), c(10,10,7), c(10,7,10),
c(7,10,10), c(9,9,17), c(9,17,9), c(17,9,9),
c(7,10,17), c(10,17,7), c(17,7,10), c(7,17,10),
c(17,10,7), c(10,7,17), c(7,9,17), c(9,17,7),
c(17,7,9), c(7,17,9), c(17,9,7), c(9,7,17))

rownames(performanceTable) <- c("a1", "a2", "a3", "a4", "a5", "a6", "a7",

MRSortIdentifyUsedVetoProfiles 37

"a8", "a9", "a10", "a11", "a12", "a13",
"a14", "a15", "a16", "a17", "a18", "a19",
"a20", "a21", "a22", "a23", "a24")

colnames(performanceTable) <- c("c1","c2","c3")

assignments <-c("P", "P", "P", "F", "F", "F", "F", "F", "F", "P", "F",
"F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F",
"F", "F")

names(assignments) <- rownames(performanceTable)

categoriesRanks <-c(1,2)

names(categoriesRanks) <- c("P","F")

criteriaMinMax <- c("max","max","max")

names(criteriaMinMax) <- colnames(performanceTable)

incompatibleAssignmentsSets<-MRSortIdentifyIncompatibleAssignments(
performanceTable, assignments,
categoriesRanks, criteriaMinMax,
veto = TRUE,
alternativesIDs = c("a1","a2","a3","a4",
"a5","a6","a7","a8","a9","a10"))

print(incompatibleAssignmentsSets)

filteredAlternativesIDs <- setdiff(c("a1","a2","a3","a4","a5","a6","a7","a8","a9"),
incompatibleAssignmentsSets[[1]][1])

print(filteredAlternativesIDs)

x<-MRSortInferenceExact(performanceTable, assignments, categoriesRanks,
criteriaMinMax, veto = TRUE,
readableWeights = TRUE, readableProfiles = TRUE,
alternativesIDs = filteredAlternativesIDs)

ElectreAssignments<-MRSort(performanceTable, x$profilesPerformances,
categoriesRanks, x$weights,
criteriaMinMax, x$lambda,
criteriaVetos=x$vetoPerformances,
alternativesIDs = filteredAlternativesIDs)

MRSortIdentifyUsedVetoProfiles

Identify veto profiles evaluations that have an impact on the final as-
signments of MRSort

38 MRSortIdentifyUsedVetoProfiles

Description

MRSort is a simplified ELECTRE-TRI approach which assigns alternatives to a set of ordered
categories using delimiting profiles evaluations. In addition, veto profiles may also be used in order
to circumvent a sufficient majority coalition in favor of an alternative being assigned to a certain
category. This method is used to identify which veto profiles evaluations have an impact on the final
assignment of at least one of the input alternatives.

Usage

MRSortIdentifyUsedVetoProfiles(performanceTable, assignments,
categoriesRanks, criteriaMinMax,
majorityThreshold,
criteriaWeights,
profilesPerformances,
vetoPerformances,
alternativesIDs = NULL,
criteriaIDs = NULL)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

assignments A vector containing the category to which each alternative is assigned. The
vector needs to be named using the alternatives IDs.

categoriesRanks

A vector containing the ranks of the categories (1 for the best, with higher values
for increasingly less preferred categories). The vector needs to be named with
the categories names, whereas the ranks need to be a range of values from 1 to
the number of categories.

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

majorityThreshold

The majority threshold needed to determine when a coalition of criteria is suffi-
cient in order to validate an outranking relation.

criteriaWeights

Vector containing the weights of the criteria. The elements are named according
to the IDs of the criteria.

profilesPerformances

Matrix containing, in each row, the lower profiles of the categories. The columns
are named according to the criteria, and the rows are named according to the
categories. The index of the row in the matrix corresponds to the rank of the
category.

MRSortIdentifyUsedVetoProfiles 39

vetoPerformances

Matrix containing in each row a vector defining the veto values for the lower
profile of the category. NA values mean that no veto is defined. A veto thresh-
old for criterion i and category k represents the performance below which an
alternative is forbidden to outrank the lower profile of category k, and thus is
forbidden to be assigned to the category k. The rows are named according to the
categories, whereas the columns are named according to the criteria.

alternativesIDs

Vector containing IDs of alternatives, according to which the datashould be fil-
tered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

Value

The function returns a matrix containing TRUE/FALSE inficators for each evaluation of the veto
profiles.

Examples

the performance table

performanceTable <- rbind(
c(1,10,1),
c(4,20,2),
c(2,20,0),
c(6,40,0),
c(30,10,3))

rownames(performanceTable) <- c("RER","METRO1","METRO2","BUS","TAXI")

colnames(performanceTable) <- c("Price","Time","Comfort")

lower profiles of the categories (best category in the first position of the list)

categoriesLowerProfiles <- rbind(c(3, 11, 3),c(7, 25, 2),c(NA,NA,NA))

colnames(categoriesLowerProfiles) <- colnames(performanceTable)

rownames(categoriesLowerProfiles)<-c("Good","Medium","Bad")

the order of the categories, 1 being the best

categoriesRanks <-c(1,2,3)

names(categoriesRanks) <- c("Good","Medium","Bad")

criteria to minimize or maximize

criteriaMinMax <- c("min","min","max")

names(criteriaMinMax) <- colnames(performanceTable)

40 MRSortInferenceApprox

vetos

criteriaVetos <- rbind(c(9, 50, -1),c(50, 50, 0),c(NA,NA,NA))

colnames(criteriaVetos) <- colnames(performanceTable)
rownames(criteriaVetos) <- c("Good","Medium","Bad")

weights

criteriaWeights <- c(1/6,3/6,2/6)

names(criteriaWeights) <- colnames(performanceTable)

assignments

assignments <- c("Good","Medium","Bad","Bad","Bad")

MRSortIndetifyUsedVetoProfiles

used<-MRSortIdentifyUsedVetoProfiles(performanceTable, assignments,
categoriesRanks, criteriaMinMax,
0.5, criteriaWeights,
categoriesLowerProfiles,
criteriaVetos)

MRSortInferenceApprox Identification of profiles, weights, majority threshold and veto thresh-
olds for MRSort using a genetic algorithm.

Description

MRSort is a simplification of the Electre TRI method that uses the pessimistic assignment rule,
without indifference or preference thresholds attached to criteria. Only a binary discordance condi-
tion is considered, i.e. a veto forbids an outranking in any possible concordance situation, or not.
The identification of the profiles, weights, majority threshold and veto thresholds are done by taking
into account assignment examples.

Usage

MRSortInferenceApprox(performanceTable, assignments, categoriesRanks, criteriaMinMax,
veto = FALSE, alternativesIDs = NULL, criteriaIDs = NULL,
timeLimit = 60, populationSize = 20, mutationProb = 0.1)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

MRSortInferenceApprox 41

assignments Vector containing the assignments (IDs of the categories) of the alternatives to
the categories. The elements are named according to the alternatives.

categoriesRanks

Vector containing the ranks of the categories. The elements are named according
to the IDs of the categories.

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

veto Boolean parameter indicating whether veto profiles are to be used or not.

alternativesIDs

Vector containing IDs of alternatives, according to which the data should be
filtered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

timeLimit Allows to fix a time limit of the execution, in seconds (default 60).

populationSize Allows to change the size of the population used by the genetic algorithm (de-
fault 20).

mutationProb Allows to change the mutation probability used by the genetic algorithm (default
0.1).

Value

The function returns a list containing:

majorityThreshold

The inferred majority threshold (single numeric value).

criteriaWeights

The inferred criteria weights (a vector named with the criteria IDs).

profilesPerformances

The inferred category limits (a matrix with the column names given by the cri-
teria IDs and the rownames given by the upper categories each profile delimits).

vetoPerformances

The inferred vetoes (a matrix with the column names given by the criteria IDs
and the rownames given by the categories to which each profile applies).

fitness The classification accuracy of the inferred model (from 0 to 1).

References

Bouyssou, D. and Marchant, T. An axiomatic approach to noncompen- satory sorting methods in
MCDM, II: more than two categories. European Journal of Operational Research, 178(1): 246–276,
2007.

no reference yet for the algorithmic approach; one should become available in 2018

42 MRSortInferenceExact

Examples

performanceTable <- rbind(c(10,10,9), c(10,9,10), c(9,10,10), c(9,9,10), c(9,10,9), c(10,9,9),
c(10,10,7), c(10,7,10), c(7,10,10), c(9,9,17), c(9,17,9), c(17,9,9),

c(7,10,17), c(10,17,7), c(17,7,10), c(7,17,10), c(17,10,7), c(10,7,17),
c(7,9,17), c(9,17,7), c(17,7,9), c(7,17,9), c(17,9,7), c(9,7,17))

rownames(performanceTable) <- c("a1", "a2", "a3", "a4", "a5", "a6", "a7", "a8", "a9", "a10", "a11",
"a12", "a13", "a14", "a15", "a16", "a17", "a18", "a19", "a20",

"a21", "a22", "a23", "a24")

colnames(performanceTable) <- c("c1","c2","c3")

assignments <-c("P", "P", "P", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F",
"F", "F", "F", "F", "F", "F", "F")

names(assignments) <- rownames(performanceTable)

categoriesRanks <- c(1,2)

names(categoriesRanks) <- c("P","F")

criteriaMinMax <- c("max","max","max")

names(criteriaMinMax) <- colnames(performanceTable)

set.seed(1)

x<-MRSortInferenceApprox(performanceTable, assignments, categoriesRanks,
criteriaMinMax, veto = TRUE,
alternativesIDs = c("a1","a2","a3","a4","a5","a6","a7"))

MRSortInferenceExact Identification of profiles, weights and majority threshold for the MR-
Sort sorting method using an exact approach.

Description

The MRSort method, a simplification of the Electre TRI method, uses the pessimistic assignment
rule, without indifference or preference thresholds attached to criteria. Only a binary discordance
condition is considered, i.e. a veto forbids an outranking in any possible concordance situation,
or not. The identification of the profiles, weights and majority threshold are done by taking into
account assignment examples.

Usage

MRSortInferenceExact(performanceTable, assignments,
categoriesRanks, criteriaMinMax,
veto = FALSE, readableWeights = FALSE,

MRSortInferenceExact 43

readableProfiles = FALSE,
alternativesIDs = NULL, criteriaIDs = NULL)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

assignments Vector containing the assignments (IDs of the categories) of the alternatives to
the categories. The elements are named according to the alternatives.

categoriesRanks

Vector containing the ranks of the categories. The elements are named according
to the IDs of the categories.

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

veto Boolean parameter indicating whether veto profiles are being used or not.
readableWeights

Boolean parameter indicating whether the weights are to be spaced more evenly
or not.

readableProfiles

Boolean parameter indicating whether the profiles are to be spaced more evenly
or not.

alternativesIDs

Vector containing IDs of alternatives, according to which the data should be
filtered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

Value

The function returns a list structured as follows :

lambda The majority threshold.

weights A vector containing the weights of the criteria. The elements are named accord-
ing to the criteria IDs.

profilesPerformances

A matrix containing the lower profiles of the categories. The columns are named
according to the criteria, whereas the rows are named according to the cate-
gories. The lower profile of the lower category can be considered as a dummy
profile.

vetoPerformances

A matrix containing the veto profiles of the categories. The columns are named
according to the criteria, whereas the rows are named according to the cate-
gories. The veto profile of the lower category can be considered as a dummy
profile.

solverStatus The solver status as given by glpk.

44 MRSortInterval

References

Bouyssou, D. and Marchant, T. An axiomatic approach to noncompen- satory sorting methods in
MCDM, II: more than two categories. European Journal of Operational Research, 178(1): 246–276,
2007.

Examples

performanceTable <- rbind(c(10,10,9), c(10,9,10), c(9,10,10), c(9,9,10),
c(9,10,9), c(10,9,9), c(10,10,7), c(10,7,10),
c(7,10,10), c(9,9,17), c(9,17,9), c(17,9,9),
c(7,10,17), c(10,17,7), c(17,7,10), c(7,17,10),
c(17,10,7), c(10,7,17), c(7,9,17), c(9,17,7),
c(17,7,9), c(7,17,9), c(17,9,7), c(9,7,17))

rownames(performanceTable) <- c("a1", "a2", "a3", "a4", "a5", "a6", "a7",
"a8", "a9", "a10", "a11", "a12", "a13",
"a14", "a15", "a16", "a17", "a18", "a19",
"a20", "a21", "a22", "a23", "a24")

colnames(performanceTable) <- c("c1","c2","c3")

assignments <-c("P", "P", "P", "F", "F", "F", "F", "F", "F", "F", "F", "F",
"F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F")

names(assignments) <- rownames(performanceTable)

categoriesRanks <-c(1,2)

names(categoriesRanks) <- c("P","F")

criteriaMinMax <- c("max","max","max")

names(criteriaMinMax) <- colnames(performanceTable)

x<-MRSortInferenceExact(performanceTable, assignments, categoriesRanks,
criteriaMinMax, veto = TRUE, readableWeights = TRUE,
readableProfiles = TRUE,
alternativesIDs = c("a1","a2","a3","a4","a5","a6","a7"))

ElectreAssignments<-MRSort(performanceTable, x$profilesPerformances,
categoriesRanks,
x$weights, criteriaMinMax, x$lambda,
criteriaVetos=x$vetoPerformances,
alternativesIDs = c("a1","a2","a3","a4","a5","a6","a7"))

MRSortInterval MRSort with imprecise evaluations

MRSortInterval 45

Description

This method is an extension of the classical MRSort, that allows the handling of problems where
the decision alternatives contain imprecise or even missing evaluations. Unlike MRSort, where
an alternative is assigned to one category, MRSortInterval offers the possibility of assigning an
alternative to one or more neighboring categories.

Usage

MRSortInterval(performanceTable,categoriesLowerProfiles,
categoriesRanks,criteriaWeights,criteriaMinMax,
majorityThresholdPes,majorityThresholdOpt)

Arguments

performanceTable

Two-dimmensionnal list containing the performance table. Each row corre-
sponds to an alternative, and each column to a criterion. Rows (resp. columns)
must be named according to the IDs of the alternatives (resp. criteria). This list
may contain imprecise performances of alternatives on the criteria, represented
by interval evaluations, as well as missing performances.

categoriesLowerProfiles

Matrix containing, in each row, the lower profiles of the categories. The columns
are named according to the criteria, and the rows are named according to the
categories except of the last one.

categoriesRanks

A vector containing the ranks of the categories (1 for the best, with higher values
for increasingly less preferred categories). The vector needs to be named with
the categories names, whereas the ranks need to be a range of values from 1 to
the number of categories.

criteriaWeights

Vector containing the weights of the criteria. The elements are named according
to the IDs of the criteria.

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized).

majorityThresholdPes

The cut threshold for the pessimistic concordance relation.
majorityThresholdOpt

The cut threshold for the optimistic concordance relation.

Value

The function returns a list containing the assignments of the alternatives to all possibles categories.

Examples

the performance table

performanceTable <- as.list(numeric(6*5))

46 MRSortInterval

dim(performanceTable)=c(6,5)
performanceTable[[1,1]]<-0
performanceTable[[1,2]]<-0
performanceTable[[1,3]]<-0
performanceTable[[1,4]]<-0
performanceTable[[1,5]]<-0
performanceTable[[2,1]]<-0
performanceTable[[2,2]]<-0
performanceTable[[2,3]]<-1
performanceTable[[2,4]]<-0
performanceTable[[2,5]]<-0
performanceTable[[3,1]]<-0
performanceTable[[3,2]]<-0
performanceTable[[3,3]]<-2
performanceTable[[3,4]]<-0
performanceTable[[3,5]]<-0
performanceTable[[4,1]]<-0
performanceTable[[4,2]]<-0
performanceTable[[4,3]]<-0:1
performanceTable[[4,4]]<-0
performanceTable[[4,5]]<-0
performanceTable[[5,1]]<-0
performanceTable[[5,2]]<-0
performanceTable[[5,3]]<-NA
performanceTable[[5,4]]<-0
performanceTable[[5,5]]<-0
performanceTable[[6,1]]<-0
performanceTable[[6,2]]<-0
performanceTable[[6,3]]<-0
performanceTable[[6,4]]<-0
performanceTable[[6,5]]<-NA

rownames(performanceTable)<-c("a1","a2","a3","a4","a5","a6")
colnames(performanceTable)<-c("c1","c2","c3","c4","c5")

lower profiles of the categories (best category in the first position of the list)

categoriesLowerProfiles <- rbind(c(1,1,1,1,1),c(0,0,0,2,2))
colnames(categoriesLowerProfiles) <- colnames(performanceTable)

rownames(categoriesLowerProfiles)<-c("Medium","Good")

categoriesRanks <-c(1,2,3)

names(categoriesRanks) <- c("Good","Medium","Bad")

weights

criteriaWeights <- c(1/5,1/5,1/5,1/5,1/5)
names(criteriaWeights) <- colnames(performanceTable)

#pessimistic and optimistic majority thresholds
majorityThresholdPes=majorityThresholdOpt=3/5

normalizePerformanceTable 47

criteria to minimize or maximize

criteriaMinMax <- c("min","min","min","max","max")
names(criteriaMinMax) <- colnames(performanceTable)

#MRSortInterval

assignments<-MRSortInterval(performanceTable,categoriesLowerProfiles,
categoriesRanks,criteriaWeights,
criteriaMinMax,majorityThresholdPes,
majorityThresholdOpt)

normalizePerformanceTable

Function to normalize (or rescale) the columns (or criteria) of a per-
formance table.

Description

Standardizes the range of the criteria according to a few methods : percentage of max, scale between
0 and 1, scale to 0 mean and 1 standard deviation, scale to euclidian unit length.

Usage

normalizePerformanceTable(performanceTable,
normalizationTypes,
alternativesIDs = NULL,
criteriaIDs = NULL)

Arguments

performanceTable

A matrix containing the performance table to be plotted. The columns are la-
belled according to the criteria IDs, and the rows according to the alternatives
IDs.

normalizationTypes

Vector indicating the type of normalization that should be applied to each of the
criteria. Possible values : "percentageOfMax", "rescaling" (minimum becomes
0, maximum becomes 1), "standardization" (rescale to a mean of 0 and a stan-
dard deviation of 1), "scaleToUnitLength" (scale the criteria values such that
the column has euclidian length 1). Any other value (like "none") will result
in no data transformation. The elements are named according to the IDs of the
criteria.

alternativesIDs

Vector containing IDs of alternatives, according to which the data should be
filtered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

48 pairwiseConsistencyMeasures

Examples

library(MCDA)

performanceTable <- matrix(runif(5*9), ncol=5)

row.names(performanceTable) <- c("x1","x2","x3","x4","x5","x6","x7","x8","x9")

colnames(performanceTable) <- c("g1","g2","g3","g4", "g5")

normalizationTypes <- c("percentageOfMax","rescaling",
"standardization","scaleToUnitLength", "none")

names(normalizationTypes) <- c("g1","g2","g3","g4","g5")

normalizedPerformanceTable <- normalizePerformanceTable(performanceTable,
normalizationTypes)

pairwiseConsistencyMeasures

Consistency Measures for Pairwise Comparison Matrices

Description

This function calculates four pairwise consistency checks: Consistency Ratio (CR) from Saaty
(1980), Koczkodaj’s Measure from Koczkodaj (1993) and Congruence / Dissonance Measures from
Siraj et al. (2015).

Usage

pairwiseConsistencyMeasures(matrix)

Arguments

matrix A reciprocal matrix containing pairwise judgements

Value

The function returns a list of outputs for the four pairwise consistency checks

References

Thomas Saaty (1980). The Analytic Hierarchy Process: Planning, Priority Setting, ISBN 0-07-
054371-2, McGraw-Hill.

W.W. Koczkodaj (1993). A new definition of consistency of pairwise comparisons. Mathematical
and Computer Modelling. 18 (7).

Sajid Siraj, Ludmil Mikhailov & John A. Keane (2015). Contribution of individual judgments
toward inconsistency in pairwise comparisons. European Journal of Operational Research. 242(2).

plotAlternativesValuesPreorder 49

Examples

examplematrix <- t(matrix(c(1,0.25,4,1/6,4,1,4,0.25,0.25,0.25,1,0.2,6,4,5,1),nrow=4,ncol=4))
pairwiseConsistencyMeasures(examplematrix)

plotAlternativesValuesPreorder

Function to plot a preorder of alternatives, based on some score or
ranking.

Description

Plots a preorder of alternatives as a graph, representing the ranking of the alternatives, w.r.t. some
scores or ranks. A decreasing order or increasing order can be specified, w.r.t. to these scores or
ranks.

Usage

plotAlternativesValuesPreorder(alternativesValues,
decreasing = TRUE,
alternativesIDs = NULL)

Arguments

alternativesValues

A vector containing some values related to alternatives, as scores or ranks. The
elements of the vector are named according to the IDs of the alternatives.

decreasing A boolean to indicate if the alternatives are to be sorted increasingly (FALSE)
or decreasingly (TRUE) w.r.t. the alternativesValues.

alternativesIDs

Vector containing IDs of alternatives, according to which the data should be
filtered.

Examples

library(MCDA)

alternativesValues <- c(10,1,8,3,8,3,4,4,8,5)

names(alternativesValues) <- c("x10","x1","x9","x2","x8",
"x3","x7","x4","x6","x5")

plotAlternativesValuesPreorder(alternativesValues,
decreasing=TRUE,
alternativesIDs=c("x10","x3","x7",

"x4","x6","x5"))

50 plotMARE

plotMARE Plot Multi-Attribute Range Evaluations (MARE)

Description

Plots the output of function MARE()

Usage

plotMARE(x)

Arguments

x Output from function MARE()

Examples

performanceTableMin <- t(matrix(c(78,87,79,19,8,68,74,8,90,89,74.5,9,20,81,30),
nrow=3,ncol=5, byrow=TRUE))

performanceTable <- t(matrix(c(80,87,86,19,8,70,74,10,90,89,75,9,33,82,30),
nrow=3,ncol=5, byrow=TRUE))

performanceTableMax <- t(matrix(c(81,87,95,19,8,72,74,15,90,89,75.5,9,36,84,30),
nrow=3,ncol=5, byrow=TRUE))

row.names(performanceTable) <- c("Yield","Toxicity","Cost","Separation","Odour")
colnames(performanceTable) <- c("Route One","Route Two","Route Three")
row.names(performanceTableMin) <- row.names(performanceTable)
colnames(performanceTableMin) <- colnames(performanceTable)
row.names(performanceTableMax) <- row.names(performanceTable)
colnames(performanceTableMax) <- colnames(performanceTable)

weights <- c(0.339,0.077,0.434,0.127,0.023)
names(weights) <- row.names(performanceTable)

criteriaMinMax <- c("max", "max", "max", "max", "max")
names(criteriaMinMax) <- row.names(performanceTable)

overall1 <- MARE(performanceTableMin, performanceTable, performanceTableMax,
weights, criteriaMinMax)

plotMARE(overall1)

overall2 <- MARE(performanceTableMin,
performanceTable,
performanceTableMax,
weights,
criteriaMinMax,
alternativesIDs = c("Route Two","Route Three"),
criteriaIDs = c("Yield","Toxicity","Cost","Separation"))

plotMARE(overall2)

plotMRSortSortingProblem 51

plotMRSortSortingProblem

Plot the categories and assignments of an Electre TRI-like sorting
problem (via separation profiles).

Description

The profiles shown are the separation profiles between the classes. They are stored as the lower
profiles of the categories.

Usage

plotMRSortSortingProblem(performanceTable, categoriesLowerProfiles,
categoriesRanks, assignments, criteriaMinMax,
criteriaUBs, criteriaLBs,
categoriesDictators = NULL, categoriesVetoes = NULL,
majorityRule = NULL, criteriaWeights = NULL,
majorityThreshold = NULL, alternativesIDs = NULL,
criteriaIDs = NULL, legendRatio = 0.2)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

categoriesLowerProfiles

Matrix containing, in each row, the lower profiles of the categories (the separa-
tion profiles in fact). The columns are named according to the criteria, and the
rows are named according to the categories. The index of the row in the matrix
corresponds to the rank of the category.

categoriesRanks

A vector containing the ranks of the categories (1 for the best, with higher values
for increasingly less preferred categories). The vector needs to be named with
the categories names, whereas the ranks need to be a range of values from 1 to
the number of categories.

assignments Vector containing the assignments (IDs of the categories) of the alternatives to
the categories. The elements are named according to the alternatives.

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

criteriaLBs Vector containing the lower bounds of the criteria to be considered for the plot-
ting. The elements are named according to the IDs of the criteria.

criteriaUBs Vector containing the upper bounds of the criteria to be considered for the plot-
ting. The elements are named according to the IDs of the criteria.

52 plotMRSortSortingProblem

categoriesDictators

Matrix containing, in each row, the lower dictator profiles of the categories. The
columns are named according to the criteria, and the rows are named according
to the categories. The index of the row in the matrix corresponds to the rank of
the category.

categoriesVetoes

Matrix containing, in each row, the lower veto profiles of the categories. The
columns are named according to the criteria, and the rows are named according
to the categories. The index of the row in the matrix corresponds to the rank of
the category.

majorityRule A string containing one of the following values: ’V’ , ’D’, ’v’, ’d’, ’dV’, ’Dv’,
’dv’. This indicates the type of majority rule that will be used by the MRSort
model. ’V’ stands for MRSort with vetoes, ’D’ stands for MRSort with dicta-
tors, ’v’ stands for MRSort with vetoes weakened by dictators, ’d’ stands for
MRSort with dictators weakened by vetoes, ’dV’ stands for MRSort with vetoes
dominating dictators, ’Dv’ stands for MRSort with dictators dominating vetoes,
while ’dv’ stands for MRSort with conflicting vetoes and dictators.

criteriaWeights

Vector containing the criteria weights. The elements are named according to the
IDs of the criteria.

majorityThreshold

A value corresponding to the majority threshold. Along with the criteria weights,
this value is used to determine when a coalition of criteria is sufficient in order
to assert that an alternative is at least as good as a category profile.

alternativesIDs

Vector containing IDs of alternatives, according to which the datashould be fil-
tered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

legendRatio The ratio between the legend and plot heights. By defaut 0.2.

Examples

the performance table

performanceTable <- rbind(
c(1,10,1),
c(4,20,2),
c(2,20,0),
c(6,40,0),
c(30,30,3))

rownames(performanceTable) <- c("RER","METRO1","METRO2","BUS","TAXI")

colnames(performanceTable) <- c("Price","Time","Comfort")

lower profiles of the categories
(best category in the first position of the list)

categoriesLowerProfiles <- rbind(c(3, 11, 3),c(7, 25, 2),c(30,30,0))

plotPiecewiseLinearValueFunctions 53

colnames(categoriesLowerProfiles) <- colnames(performanceTable)

rownames(categoriesLowerProfiles)<-c("Good","Medium","Bad")

categoriesRanks <-c(1,2,3)

names(categoriesRanks) <- c("Good","Medium","Bad")

criteria to minimize or maximize

criteriaMinMax <- c("min","min","max")

names(criteriaMinMax) <- colnames(performanceTable)

lower bounds of the criteria for the determination of value functions

criteriaLBs=c(0,5,0)

names(criteriaLBs) <- colnames(performanceTable)

upper bounds of the criteria for the determination of value functions

criteriaUBs=c(50,50,4)

names(criteriaUBs) <- colnames(performanceTable)

weights

criteriaWeights <- c(1,3,2)

names(criteriaWeights) <- colnames(performanceTable)

assignments <- assignments<-MRSort(performanceTable,
categoriesLowerProfiles,
categoriesRanks,
criteriaWeights,
criteriaMinMax, 3)

names(assignments) <- rownames(performanceTable)

plotMRSortSortingProblem(performanceTable, categoriesLowerProfiles,
categoriesRanks, assignments, criteriaMinMax,
criteriaUBs, criteriaLBs)

plotPiecewiseLinearValueFunctions

Function to plot piecewise linear value functions.

54 plotRadarPerformanceTable

Description

Plots piecewise linear value function.

Usage

plotPiecewiseLinearValueFunctions(valueFunctions,
criteriaIDs = NULL)

Arguments

valueFunctions A list containing, for each criterion, the piecewise linear value functions defined
by the coordinates of the break points. Each value function is defined by a matrix
of breakpoints, where the first row corresponds to the abscissa (row labelled "x")
and where the second row corresponds to the ordinate (row labelled "y").

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

Examples

v<-list(
Price = array(c(30, 0, 16, 0, 2, 0.0875),

dim=c(2,3), dimnames = list(c("x", "y"), NULL)),
Time = array(c(40, 0, 30, 0, 20, 0.025, 10, 0.9),

dim = c(2, 4), dimnames = list(c("x", "y"), NULL)),
Comfort = array(c(0, 0, 1, 0, 2, 0.0125, 3, 0.0125),

dim = c(2, 4), dimnames = list(c("x", "y"), NULL)))

plot the value functions

plotPiecewiseLinearValueFunctions(v)

plotRadarPerformanceTable

Function to plot radar plots of alternatives of a performance table.

Description

Plots radar plots of alternatives contained in a performance table, either in one radar plot, or on
multiple radar plots. For a given alternative, the plot shows how far above/below average (the
thick black line) each of the criteria performances values are (average taken w.r.t. to the filtered
performance table).

Usage

plotRadarPerformanceTable(performanceTable,
criteriaMinMax=NULL,
alternativesIDs = NULL,
criteriaIDs = NULL,
overlay=FALSE,

plotRadarPerformanceTable 55

bw=FALSE,
lwd=2)

Arguments

performanceTable

A matrix containing the performance table to be plotted. The columns are la-
belled according to the criteria IDs, and the rows according to the alternatives
IDs.

criteriaMinMax Vector indicating whether criteria should be minimized or maximized. If it is
given, a "higher" value in the radar plot corresponds to a more preferred value
according to the decision maker. "min" (resp. "max") indicates that the criterion
has to be minimized (maximized). The elements are named according to the IDs
of the criteria.

alternativesIDs

Vector containing IDs of alternatives, according to which the data should be
filtered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.
overlay Boolean value indicating if the plots should be overlayed on one plot (TRUE),

or not (FALSE)
bw Boolean value indicating if the plots should be in black/white (TRUE) or color

(FALSE)
lwd Value indicating the line width of the plot.

Examples

library(MCDA)

performanceTable <- matrix(runif(6*9), ncol=6)

row.names(performanceTable) <- c("x1","x2","x3","x4","x5","x6","x7","x8","x9")

colnames(performanceTable) <- c("g1","g2","g3","g4","g5","g6")

criteriaMinMax <- c("min","max","min","max","min","max")

names(criteriaMinMax) <- c("g1","g2","g3","g4","g5","g6")

plotRadarPerformanceTable(performanceTable, criteriaMinMax, overlay=TRUE)

plotRadarPerformanceTable(performanceTable, criteriaMinMax,
alternativesIDs = c("x1","x2","x3","x4"),
criteriaIDs = c("g1","g3","g4","g5","g6"),
overlay=FALSE, bw=FALSE)

plotRadarPerformanceTable(performanceTable, criteriaMinMax,
alternativesIDs = c("x1","x2"),
criteriaIDs = c("g1","g3","g4","g5","g6"),
overlay=FALSE)

56 plotSURE

plotSURE Plot SURE kernel density plots.

Description

Plots the output of function SURE()

Usage

plotSURE(SURE,
greyScale = FALSE,
separate = FALSE)

Arguments

SURE Output from function SURE().

greyScale TRUE/FALSE indicating if you want the plot to be in greyscale.

separate TRUE/FALSE indicating if you want the density plots to be separated.

Examples

performanceTableMin <- t(matrix(c(78,87,79,19,8,68,74,8,90,89,74.5,9,20,81,30),
nrow=3,ncol=5, byrow=TRUE))

performanceTable <- t(matrix(c(80,87,86,19,8,70,74,10,90,89,75,9,33,82,30),
nrow=3,ncol=5, byrow=TRUE))

performanceTableMax <- t(matrix(c(81,87,95,19,8,72,74,15,90,89,75.5,9,36,84,30),
nrow=3,ncol=5, byrow=TRUE))

row.names(performanceTable) <- c("Yield","Toxicity","Cost","Separation","Odour")
colnames(performanceTable) <- c("Route One","Route Two","Route Three")
row.names(performanceTableMin) <- row.names(performanceTable)
colnames(performanceTableMin) <- colnames(performanceTable)
row.names(performanceTableMax) <- row.names(performanceTable)
colnames(performanceTableMax) <- colnames(performanceTable)

criteriaWeights <- c(0.339,0.077,0.434,0.127,0.023)
names(criteriaWeights) <- row.names(performanceTable)

criteriaMinMax <- c("max", "max", "max", "max", "max")
names(criteriaMinMax) <- row.names(performanceTable)

test1 <- SURE(performanceTableMin,
performanceTable,
performanceTableMax,
criteriaWeights,
criteriaMinMax,
NoOfSimulations = 101)

summary(test1)

PROMETHEEI 57

plotSURE(test1)
plotSURE(test1, greyScale = TRUE, separate = TRUE)

PROMETHEEI PROMETHEE I

Description

The PROMETHEE I constructs preference indices from the criteria evaluations of alternatives and
outputs three preference relations (P - preference, I - indifference, R - incomparability) based on the
outranking flows between the alternatives.

Usage

PROMETHEEI(performanceTable, preferenceFunction,preferenceThreshold,
indifferenceThreshold,gaussParameter,
criteriaWeights,criteriaMinMax)

Arguments

performanceTable

Matrix containing the evaluation table. Each row corresponds to an alternative,
and each column to a criterion. Rows (resp. columns) must be named according
to the IDs of the alternatives (resp. criteria).

preferenceFunction

A vector with preference functions.preferenceFunction should be equal to Usual,U-
shape,V-shape,Level,V-shape-Indiff or Gaussian. The elements are named ac-
cording to the IDs of the criteria.

preferenceThreshold

A vector containing threshold of strict preference. The elements are named
according to the IDs of the criteria.

indifferenceThreshold

A vector containing threshold of indifference. The elements are named accord-
ing to the IDs of the criteria.

gaussParameter A vector containing parameter of the Gaussian preference function. The ele-
ments are named according to the IDs of the criteria.

criteriaWeights

Vector containing the weights of the criteria. The elements are named according
to the IDs of the criteria.

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

Value

The function returns three matrices: The first one contains the preference relations between the
alternatives, the second one contains the indifference relations between the alternatives and the
third one contains the incomparability relations between the alternatives.

58 PROMETHEEII

Examples

The evaluation table

performanceTable <- rbind(
c(1,10,1),
c(4,20,2),
c(2,20,0),
c(6,40,0),
c(30,30,3))

rownames(performanceTable) <- c("RER","METRO1","METRO2","BUS","TAXI")
colnames(performanceTable) <- c("Price","Time","Comfort")

The preference functions
preferenceFunction<-c("Gaussian","Level","V-shape-Indiff")

#Preference threshold
preferenceThreshold<-c(5,15,3)
names(preferenceThreshold)<-colnames(performanceTable)

#Indifference threshold
indifferenceThreshold<-c(3,11,1)
names(indifferenceThreshold)<-colnames(performanceTable)

#Parameter of the Gaussian preference function
gaussParameter<-c(4,0,0)
names(gaussParameter)<-colnames(performanceTable)

#weights

criteriaWeights<-c(0.2,0.3,0.5)
names(criteriaWeights)<-colnames(performanceTable)

criteria to minimize or maximize

criteriaMinMax<-c("min","min","max")
names(criteriaMinMax)<-colnames(performanceTable)

PROMETHEEI(performanceTable, preferenceFunction,preferenceThreshold,
indifferenceThreshold,gaussParameter,criteriaWeights,criteriaMinMax)

PROMETHEEII PROMETHEE II

Description

The PROMETHEE II constructs preference indices from the criteria evaluations of alternatives and
outputs a pre-order based on the outranking flows between the alternatives.

PROMETHEEII 59

Usage

PROMETHEEII(performanceTable, preferenceFunction,
preferenceThreshold,indifferenceThreshold,gaussParameter,
criteriaWeights,criteriaMinMax)

Arguments

performanceTable

Matrix containing the evaluation table. Each row corresponds to an alternative,
and each column to a criterion. Rows (resp. columns) must be named according
to the IDs of the alternatives (resp. criteria).

preferenceFunction

A vector with preference functions.preferenceFunction should be equal to Usual,U-
shape,V-shape, Level,V-shape-Indiff or Gaussian. The elements are named ac-
cording to the IDs of the criteria.

preferenceThreshold

A vector containing threshold of strict preference. The elements are named
according to the IDs of the criteria.

indifferenceThreshold

A vector containing threshold of indifference. The elements are named accord-
ing to the IDs of the criteria.

gaussParameter A vector containing parameter of the Gaussian preference function. The ele-
ments are named according to the IDs of the criteria.

criteriaWeights

Vector containing the weights of the criteria. The elements are named according
to the IDs of the criteria.

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

Value

The function returns a list containing the alternatives IDs in decreasing order of preference. Each
elements of the list can be a vector of alternatives IDs.

Examples

The evaluation table

performanceTable <- rbind(
c(1,10,1),
c(4,20,2),
c(2,20,0),
c(6,40,0),
c(30,30,3))

rownames(performanceTable) <- c("RER","METRO1","METRO2","BUS","TAXI")
colnames(performanceTable) <- c("Price","Time","Comfort")

60 PROMETHEEOutrankingFlows

The preference functions
preferenceFunction<-c("Gaussian","Level","V-shape-Indiff")

#Preference threshold
preferenceThreshold<-c(5,15,3)
names(preferenceThreshold)<-colnames(performanceTable)

#Indifference threshold
indifferenceThreshold<-c(3,11,1)
names(indifferenceThreshold)<-colnames(performanceTable)

#Parameter of the Gaussian preference function
gaussParameter<-c(4,0,0)
names(gaussParameter)<-colnames(performanceTable)

#weights

criteriaWeights<-c(0.2,0.3,0.5)
names(criteriaWeights)<-colnames(performanceTable)

criteria to minimize or maximize

criteriaMinMax<-c("min","min","max")
names(criteriaMinMax)<-colnames(performanceTable)

PROMETHEEII(performanceTable, preferenceFunction,preferenceThreshold,
indifferenceThreshold,gaussParameter,criteriaWeights,
criteriaMinMax)

PROMETHEEOutrankingFlows

Outranking flows for the PROMETHEE methods

Description

This function computes the positive and negative outranking flows for the PROMETHEE methods.
It takes as input a performance table and converts the evaluations to preference indices based on the
given function types and parameters for each criterion.

Usage

PROMETHEEOutrankingFlows(performanceTable, preferenceFunction,
preferenceThreshold,indifferenceThreshold,
gaussParameter,criteriaWeights,criteriaMinMax)

PROMETHEEOutrankingFlows 61

Arguments

performanceTable

Matrix containing the evaluation table. Each row corresponds to an alternative,
and each column to a criterion. Rows (resp. columns) must be named according
to the IDs of the alternatives (resp. criteria).

preferenceFunction

A vector with preference functions.preferenceFunction should be equal to Usual,U-
shape,V-shape, Level,V-shape-Indiff or Gaussian. The elements are named ac-
cording to the IDs of the criteria.

preferenceThreshold

A vector containing threshold of strict preference. The elements are named
according to the IDs of the criteria.

indifferenceThreshold

A vector containing threshold of indifference. The elements are named accord-
ing to the IDs of the criteria.

gaussParameter A vector containing parameter of the Gaussian preference function. The ele-
ments are named according to the IDs of the criteria.

criteriaWeights

Vector containing the weights of the criteria. The elements are named according
to the IDs of the criteria.

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

Value

The function returns two vectors: The first one contains the positive outranking flows and the second
one contains the negative outranking flows.

Examples

The evaluation table

performanceTable <- rbind(
c(1,10,1),
c(4,20,2),
c(2,20,0),
c(6,40,0),
c(30,30,3))

rownames(performanceTable) <- c("RER","METRO1","METRO2","BUS","TAXI")
colnames(performanceTable) <- c("Price","Time","Comfort")

The preference functions
preferenceFunction<-c("Gaussian","Level","V-shape-Indiff")

#Preference threshold
preferenceThreshold<-c(5,15,3)
names(preferenceThreshold)<-colnames(performanceTable)

62 PROMETHEEPreferenceIndices

#Indifference threshold
indifferenceThreshold<-c(3,11,1)
names(indifferenceThreshold)<-colnames(performanceTable)

#Parameter of the Gaussian preference function
gaussParameter<-c(4,0,0)
names(gaussParameter)<-colnames(performanceTable)

#weights

criteriaWeights<-c(0.2,0.3,0.5)
names(criteriaWeights)<-colnames(performanceTable)

criteria to minimize or maximize

criteriaMinMax<-c("min","min","max")
names(criteriaMinMax)<-colnames(performanceTable)

Outranking flows

outrankingFlows<-PROMETHEEOutrankingFlows(performanceTable, preferenceFunction,
preferenceThreshold,indifferenceThreshold,
gaussParameter,criteriaWeights,
criteriaMinMax)

PROMETHEEPreferenceIndices

Preference indices for the PROMETHEE methods

Description

This function computes the preference indices from a performance table based on the given function
types and parameters for each criterion.

Usage

PROMETHEEPreferenceIndices(performanceTable, preferenceFunction,
preferenceThreshold,indifferenceThreshold,
gaussParameter,criteriaWeights,criteriaMinMax)

Arguments

performanceTable

Matrix containing the performance table. Each row corresponds to an alterna-
tive, and each column to a criterion. Rows (resp. columns) must be named
according to the IDs of the alternatives (resp. criteria).

PROMETHEEPreferenceIndices 63

preferenceFunction

A vector containing the names of the preference functions to be used. prefer-
enceFunction should be equal to Usual, U-shape, V-shape, Level, V-shape-Indiff
or Gaussian. The elements of the vector are named according to the IDs of the
criteria.

preferenceThreshold

A vector containing thresholds of strict preference. The elements are named
according to the IDs of the criteria.

indifferenceThreshold

A vector containing thresholds of indifference. The elements are named accord-
ing to the IDs of the criteria.

gaussParameter A vector containing parameters of the Gaussian preference function. The ele-
ments are named according to the IDs of the criteria.

criteriaWeights

Vector containing the weights of the criteria. The elements are named according
to the IDs of the criteria.

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

Value

The function returns a matrix containing all the aggregated preference indices.

Examples

The evaluation table

performanceTable <- rbind(
c(1,10,1),
c(4,20,2),
c(2,20,0),
c(6,40,0),
c(30,30,3))

rownames(performanceTable) <- c("RER","METRO1","METRO2","BUS","TAXI")
colnames(performanceTable) <- c("Price","Time","Comfort")

The preference functions
preferenceFunction<-c("Gaussian","Level","V-shape-Indiff")

#Preference threshold
preferenceThreshold<-c(5,15,3)
names(preferenceThreshold)<-colnames(performanceTable)

#Indifference threshold
indifferenceThreshold<-c(3,11,1)
names(indifferenceThreshold)<-colnames(performanceTable)

#Parameter of the Gaussian preference function
gaussParameter<-c(4,0,0)

64 SRMP

names(gaussParameter)<-colnames(performanceTable)

#weights

criteriaWeights<-c(0.2,0.3,0.5)
names(criteriaWeights)<-colnames(performanceTable)

criteria to minimize or maximize

criteriaMinMax<-c("min","min","max")
names(criteriaMinMax)<-colnames(performanceTable)

#Preference indices

preferenceTable<-PROMETHEEPreferenceIndices(performanceTable, preferenceFunction,
preferenceThreshold, indifferenceThreshold,
gaussParameter, criteriaWeights,
criteriaMinMax)

SRMP SRMP: a simple ranking method using reference profiles

Description

SRMP is a ranking method that uses dominating reference profiles, in a given lexicographic order-
ing, in order to output a total preorder of a set of alternatives.

Usage

SRMP(performanceTable, referenceProfiles, lexicographicOrder, criteriaWeights,
criteriaMinMax, alternativesIDs = NULL, criteriaIDs = NULL)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

referenceProfiles

Matrix containing, in each row, the reference profiles. The columns are named
according to the criteria.

lexicographicOrder

A vector containing the indexes of the reference profiles in a given order. This
vetor needs to be of the same length as the number of rows in referenceProfiles
and it has to contain a permutation of the indices of these rows.

SRMP 65

criteriaWeights

Vector containing the weights of the criteria. The elements are named according
to the IDs of the criteria.

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

alternativesIDs

Vector containing IDs of alternatives, according to which the datashould be fil-
tered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

Value

The function returns a vector containing the ranks of the alternatives (the higher the better).

References

A. Rolland. Procédures d’agrégation ordinale de préférences avec points de référence pour l’aide a
la décision. PhD thesis, Université Paris VI, 2008.

Examples

the performance table

performanceTable <- rbind(c(10,10,9),c(10,9,10),c(9,10,10),c(9,9,10),c(9,10,9),c(10,9,9),
c(10,10,7),c(10,7,10),c(7,10,10),c(9,9,17),c(9,17,9),c(17,9,9),

c(7,10,17),c(10,17,7),c(17,7,10),c(7,17,10),c(17,10,7),c(10,7,17),
c(7,9,17),c(9,17,7),c(17,7,9),c(7,17,9),c(17,9,7),c(9,7,17))

referenceProfiles <- rbind(c(5,5,5),c(10,10,10),c(15,15,15))

lexicographicOrder <- c(2,1,3)

weights <- c(0.2,0.44,0.36)

criteriaMinMax <- c("max","max","max")

rownames(performanceTable) <- c("a1","a2","a3","a4","a5","a6","a7","a8","a9","a10","a11","a12",
"a13","a14","a15","a16","a17","a18","a19","a20","a21","a22",

"a23","a24")

colnames(performanceTable) <- c("c1","c2","c3")

colnames(referenceProfiles) <- c("c1","c2","c3")

names(weights) <- c("c1","c2","c3")

names(criteriaMinMax) <- colnames(performanceTable)

expectedpreorder <- list('a16','a13',c('a3','a9'),'a14','a17',c('a1','a7'),'a18','a15',
c('a2','a8'),c('a11','a20','a22'),'a5',c('a10','a19','a24'),

66 SRMPInference

'a4',c('a12','a21','a23'),'a6')

preorder<-SRMP(performanceTable, referenceProfiles, lexicographicOrder, weights, criteriaMinMax)

SRMPInference Exact inference of an SRMP model given a maximum number of refer-
ence profiles

Description

Exact inference approach from pairwise comparisons of alternatives for the SRMP ranking model.
This method outputs an SRMP model that is as consistent as possible with the provided pairwise
comparisons (i.e. the model - the number of profiles and their lexicographic order - that maxi-
mizes the number of fulfilled pairwise comparisons). The method will search for a model with the
minimum possible number of profiles up to a given maximum value.

Usage

SRMPInference(performanceTable, criteriaMinMax, maxProfilesNumber, preferencePairs,
indifferencePairs = NULL,alternativesIDs = NULL, criteriaIDs = NULL,
timeLimit = NULL)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

maxProfilesNumber

A strictly pozitive numerical value which gives the highest number of reference
profiles the sought SRMP model should have.

preferencePairs

A two column matrix containing on each row a pair of alternative names where
the first alternative is considered to be strictly preferred to the second.

indifferencePairs

A two column matrix containing on each row a pair of alternative names the two
alternatives are considered to indifferent with respect to each other.

alternativesIDs

Vector containing IDs of alternatives, according to which the datashould be fil-
tered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

timeLimit Allows to fix a time limit of the execution, in seconds (default 60).

SRMPInference 67

Value

The function returns a list containing:

criteriaWeights

The inferred criteria weights.
referenceProfilesNumber

The inferred reference profiles number.
referenceProfiles

The inferred reference profiles.
lexicographicOrder

The inferred lexicographic order of the profiles.

fitness The percentage (0 to 1) of fulfilled pair-wise relations.

solverStatus The solver status as given by glpk.
humanReadableStatus

A description of the solver status.

References

A-L. OLTEANU, V. MOUSSEAU, W. OUERDANE, A. ROLLAND, Y. ZHENG, Preference Elic-
itation for a Ranking Method based on Multiple Reference Profiles, forthcoming 2018.

Examples

performanceTable <- rbind(c(10,10,9),c(10,9,10),c(9,10,10),c(9,9,10),c(9,10,9),c(10,9,9),
c(10,10,7),c(10,7,10),c(7,10,10),c(9,9,17),c(9,17,9),c(17,9,9),

c(7,10,17),c(10,17,7),c(17,7,10),c(7,17,10),c(17,10,7),c(10,7,17),
c(7,9,17),c(9,17,7),c(17,7,9),c(7,17,9),c(17,9,7),c(9,7,17))

criteriaMinMax <- c("max","max","max")

rownames(performanceTable) <- c("a1","a2","a3","a4","a5","a6","a7","a8","a9","a10","a11","a12",
"a13","a14","a15","a16","a17","a18","a19","a20","a21","a22",

"a23","a24")

colnames(performanceTable) <- c("c1","c2","c3")

names(criteriaMinMax) <- colnames(performanceTable)

preferencePairs <- matrix(c("a16","a13","a3","a14","a17","a1","a18","a15","a2","a11","a5",
"a10","a4","a12","a13","a3","a14","a17","a1","a18","a15","a2",

"a11","a5","a10","a4","a12","a6"),14,2)
indifferencePairs <- matrix(c("a3","a1","a2","a11","a11","a20","a10","a10","a19","a12","a12",

"a21","a9","a7","a8","a20","a22","a22","a19","a24","a24","a21",
"a23","a23"),12,2)

result<-SRMPInference(performanceTable, criteriaMinMax, 3, preferencePairs, indifferencePairs,
alternativesIDs = c("a1","a3","a7","a9","a13","a14","a15","a16","a17",

"a18"))

68 SRMPInferenceApprox

SRMPInferenceApprox Approximative inference of an SRMP model

Description

Approximative inference approach from pairwise comparisons of alternatives for the SRMP ranking
model. This method outputs an SRMP model that fulfils as many pairwise comparisons as possible.
Neither the number of reference profiles, nor the lexicographic order are fixed beforehand, however
a maximum value for the number of reference profiles needs to be provided.

Usage

SRMPInferenceApprox(performanceTable, criteriaMinMax, maxProfilesNumber, preferencePairs,
indifferencePairs = NULL, alternativesIDs = NULL, criteriaIDs = NULL,

timeLimit = 60, populationSize = 20, mutationProb = 0.1)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

maxProfilesNumber

The maximum number of reference profiles of the SRMP model.

preferencePairs

A two column matrix containing on each row a pair of alternative names where
the first alternative is considered to be strictly preferred to the second.

indifferencePairs

A two column matrix containing on each row a pair of alternative names the two
alternatives are considered to indifferent with respect to each other.

alternativesIDs

Vector containing IDs of alternatives, according to which the datashould be fil-
tered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

timeLimit Allows to fix a time limit of the execution, in seconds (default 60).

populationSize Allows to change the size of the population used by the genetic algorithm (de-
fault 20).

mutationProb Allows to change the mutation probability used by the genetic algorithm (default
0.1).

SRMPInferenceApprox 69

Value

The function returns a list containing:

criteriaWeights

The inferred criteria weights.
referenceProfilesNumber

The number of inferred reference profiles.
referenceProfiles

The inferred reference profiles.
lexicographicOrder

The inferred lexicographic order of the reference profiles.

fitness The percentage of fulfilled pair-wise relations.

References

A-L. OLTEANU, V. MOUSSEAU, W. OUERDANE, A. ROLLAND, Y. ZHENG, Preference Elic-
itation for a Ranking Method based on Multiple Reference Profiles, forthcoming 2018.

Examples

performanceTable <- rbind(c(10,10,9),c(10,9,10),c(9,10,10),c(9,9,10),c(9,10,9),c(10,9,9),
c(10,10,7),c(10,7,10),c(7,10,10),c(9,9,17),c(9,17,9),c(17,9,9),

c(7,10,17),c(10,17,7),c(17,7,10),c(7,17,10),c(17,10,7),c(10,7,17),
c(7,9,17),c(9,17,7),c(17,7,9),c(7,17,9),c(17,9,7),c(9,7,17))

criteriaMinMax <- c("max","max","max")

rownames(performanceTable) <- c("a1","a2","a3","a4","a5","a6","a7","a8","a9","a10","a11",
"a12","a13","a14","a15","a16","a17","a18","a19","a20",
"a21","a22","a23","a24")

colnames(performanceTable) <- c("c1","c2","c3")

names(criteriaMinMax) <- colnames(performanceTable)

expected result for the tests below

expectedpreorder <- list("a16","a13",c("a3","a9"),"a14","a17",c("a1","a7"),"a18","a15")

test - preferences and indifferences

preferencePairs <- matrix(c("a16","a13","a3","a14","a17","a1","a18","a15","a2","a11",
"a5","a10","a4","a12","a13","a3","a14","a17","a1","a18",
"a15","a2","a11","a5","a10","a4","a12","a6"),14,2)

indifferencePairs <- matrix(c("a3","a1","a2","a11","a11","a20","a10","a10","a19","a12",
"a12","a21","a9","a7","a8","a20","a22","a22","a19","a24",
"a24","a21","a23","a23"),12,2)

set.seed(1)

70 SRMPInferenceApproxFixedLexicographicOrder

result<-SRMPInferenceApprox(performanceTable, criteriaMinMax, 3, preferencePairs,
indifferencePairs, alternativesIDs = c("a1","a3","a7",
"a9","a13","a14","a15","a16","a17","a18"))

SRMPInferenceApproxFixedLexicographicOrder

Approximative inference of an SRMP model given the lexicographic
order of the profiles

Description

Approximative inference approach from pairwise comparisons of alternatives for the SRMP ranking
model. This method outputs an SRMP model that fulfils as many pairwise comparisons as possible.
The number of reference profiles and their lexicographic order is fixed beforehand.

Usage

SRMPInferenceApproxFixedLexicographicOrder(performanceTable, criteriaMinMax,
lexicographicOrder, preferencePairs,
indifferencePairs = NULL,

alternativesIDs = NULL, criteriaIDs = NULL,
timeLimit = 60,

populationSize = 20, mutationProb = 0.1)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

lexicographicOrder

A vector containing the indexes of the reference profiles in a given order. The
number of reference profiles to be used is derrived implicitly from the size of
this vector. The elements of this vector need to be a permutation of the indices
from 1 to its size.

preferencePairs

A two column matrix containing on each row a pair of alternative names where
the first alternative is considered to be strictly preferred to the second.

indifferencePairs

A two column matrix containing on each row a pair of alternative names the two
alternatives are considered to indifferent with respect to each other.

alternativesIDs

Vector containing IDs of alternatives, according to which the datashould be fil-
tered.

SRMPInferenceApproxFixedLexicographicOrder 71

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

timeLimit Allows to fix a time limit of the execution, in seconds (default 60).

populationSize Allows to change the size of the population used by the genetic algorithm (de-
fault 20).

mutationProb Allows to change the mutation probability used by the genetic algorithm (default
0.1).

Value

The function returns a list containing:

criteriaWeights

The inferred criteria weights.
referenceProfiles

The inferred reference profiles.
lexicographicOrder

The lexicographic order of the reference profiles, in this case the one that was
originally given as input.

fitness The percentage of fulfilled pair-wise relations.

References

A-L. OLTEANU, V. MOUSSEAU, W. OUERDANE, A. ROLLAND, Y. ZHENG, Preference Elic-
itation for a Ranking Method based on Multiple Reference Profiles, forthcoming 2018.

Examples

performanceTable <- rbind(c(10,10,9),c(10,9,10),c(9,10,10),c(9,9,10),c(9,10,9),c(10,9,9),
c(10,10,7),c(10,7,10),c(7,10,10),c(9,9,17),c(9,17,9),c(17,9,9),

c(7,10,17),c(10,17,7),c(17,7,10),c(7,17,10),c(17,10,7),c(10,7,17),
c(7,9,17),c(9,17,7),c(17,7,9),c(7,17,9),c(17,9,7),c(9,7,17))

lexicographicOrder <- c(1,2,3)

criteriaMinMax <- c("max","max","max")

rownames(performanceTable) <- c("a1","a2","a3","a4","a5","a6","a7","a8","a9","a10","a11",
"a12","a13","a14","a15","a16","a17","a18","a19","a20",
"a21","a22","a23","a24")

colnames(performanceTable) <- c("c1","c2","c3")

names(criteriaMinMax) <- colnames(performanceTable)

expected result for the tests below

expectedpreorder <- list("a16","a13",c("a3","a9"),"a14","a17",c("a1","a7"),"a18","a15")

test - preferences and indifferences

72 SRMPInferenceApproxFixedProfilesNumber

preferencePairs <- matrix(c("a16","a13","a3","a14","a17","a1","a18","a15","a2","a11",
"a5","a10","a4","a12","a13","a3","a14","a17","a1","a18",
"a15","a2","a11","a5","a10","a4","a12","a6"),14,2)

indifferencePairs <- matrix(c("a3","a1","a2","a11","a11","a20","a10","a10","a19","a12",
"a12","a21","a9","a7","a8","a20","a22","a22","a19","a24",
"a24","a21","a23","a23"),12,2)

set.seed(1)

result<-SRMPInferenceApproxFixedLexicographicOrder(performanceTable, criteriaMinMax,
lexicographicOrder, preferencePairs,
indifferencePairs, alternativesIDs =
c("a1","a3","a7","a9","a13","a14",
"a15","a16","a17","a18"))

SRMPInferenceApproxFixedProfilesNumber

Approximative inference of an SRMP model given the number of ref-
erence profiles

Description

Approximative inference approach from pairwise comparisons of alternatives for the SRMP ranking
model. This method outputs an SRMP model that fulfils as many pairwise comparisons as possi-
ble. The number of reference profiles is fixed beforehand, however the algorithm will explore any
lexicographic order between them.

Usage

SRMPInferenceApproxFixedProfilesNumber(performanceTable, criteriaMinMax,
profilesNumber, preferencePairs,
indifferencePairs = NULL,

alternativesIDs = NULL, criteriaIDs = NULL,
timeLimit = 60,
populationSize = 20, mutationProb = 0.1)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

profilesNumber The number of reference profiles of the SRMP model.

SRMPInferenceApproxFixedProfilesNumber 73

preferencePairs

A two column matrix containing on each row a pair of alternative names where
the first alternative is considered to be strictly preferred to the second.

indifferencePairs

A two column matrix containing on each row a pair of alternative names the two
alternatives are considered to indifferent with respect to each other.

alternativesIDs

Vector containing IDs of alternatives, according to which the datashould be fil-
tered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

timeLimit Allows to fix a time limit of the execution, in seconds (default 60).

populationSize Allows to change the size of the population used by the genetic algorithm (de-
fault 20).

mutationProb Allows to change the mutation probability used by the genetic algorithm (default
0.1).

Value

The function returns a list containing:

criteriaWeights

The inferred criteria weights.
referenceProfiles

The inferred reference profiles.
lexicographicOrder

The inferred lexicographic order of the reference profiles.

fitness The percentage of fulfilled pair-wise relations.

References

A-L. OLTEANU, V. MOUSSEAU, W. OUERDANE, A. ROLLAND, Y. ZHENG, Preference Elic-
itation for a Ranking Method based on Multiple Reference Profiles, forthcoming 2018.

Examples

the performance table

performanceTable <- rbind(c(10,10,9),c(10,9,10),c(9,10,10),c(9,9,10),c(9,10,9),c(10,9,9),
c(10,10,7),c(10,7,10),c(7,10,10),c(9,9,17),c(9,17,9),c(17,9,9),

c(7,10,17),c(10,17,7),c(17,7,10),c(7,17,10),c(17,10,7),c(10,7,17),
c(7,9,17),c(9,17,7),c(17,7,9),c(7,17,9),c(17,9,7),c(9,7,17))

criteriaMinMax <- c("max","max","max")

rownames(performanceTable) <- c("a1","a2","a3","a4","a5","a6","a7","a8","a9","a10","a11",
"a12","a13","a14","a15","a16","a17","a18","a19","a20",
"a21","a22","a23","a24")

74 SRMPInferenceFixedLexicographicOrder

colnames(performanceTable) <- c("c1","c2","c3")

names(criteriaMinMax) <- colnames(performanceTable)

expected result for the tests below

expectedpreorder <- list("a16","a13",c("a3","a9"),"a14",c("a1","a7"),"a15")

test - preferences and indifferences

preferencePairs <- matrix(c("a16","a13","a3","a14","a17","a1","a18","a15","a2","a11",
"a5","a10","a4","a12","a13","a3","a14","a17","a1","a18",
"a15","a2","a11","a5","a10","a4","a12","a6"),14,2)

indifferencePairs <- matrix(c("a3","a1","a2","a11","a11","a20","a10","a10","a19","a12",
"a12","a21","a9","a7","a8","a20","a22","a22","a19","a24",
"a24","a21","a23","a23"),12,2)

set.seed(1)

result<-SRMPInferenceApproxFixedProfilesNumber(performanceTable, criteriaMinMax, 3,
preferencePairs, indifferencePairs,
alternativesIDs = c("a1","a3","a7","a9",
"a13","a14","a15","a16"))

SRMPInferenceFixedLexicographicOrder

Exact inference of an SRMP model given the lexicographic order of
the profiles

Description

Exact inference approach from pairwise comparisons of alternatives for the SRMP ranking model.
This method outputs an SRMP model that maximizes the number of fulfilled pairwise comparisons.
The number of reference profiles and their lexicographic order is fixed.

Usage

SRMPInferenceFixedLexicographicOrder(performanceTable, criteriaMinMax, lexicographicOrder,
preferencePairs, indifferencePairs = NULL,
alternativesIDs = NULL, criteriaIDs = NULL,
timeLimit = NULL)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

SRMPInferenceFixedLexicographicOrder 75

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

lexicographicOrder

A vector containing the indexes of the reference profiles in a given order. The
number of reference profiles to be used is derrived implicitly from the size of
this vector. The elements of this vector need to be a permutation of the indices
from 1 to its size.

preferencePairs

A two column matrix containing on each row a pair of alternative names where
the first alternative is considered to be strictly preferred to the second.

indifferencePairs

A two column matrix containing on each row a pair of alternative names the two
alternatives are considered to indifferent with respect to each other.

alternativesIDs

Vector containing IDs of alternatives, according to which the datashould be fil-
tered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

timeLimit Allows to fix a time limit of the execution, in seconds. By default NULL (which
corresponds to no time limit).

Value

The function returns a list containing:

criteriaWeights

The inferred criteria weights.
referenceProfiles

The inferred reference profiles.

fitness The percentage (0 to 1) of fulfilled pair-wise relations.

solverStatus The solver status as given by glpk.
humanReadableStatus

A description of the solver status.

References

A-L. OLTEANU, V. MOUSSEAU, W. OUERDANE, A. ROLLAND, Y. ZHENG, Preference Elic-
itation for a Ranking Method based on Multiple Reference Profiles, forthcoming 2018.

Examples

the performance table

performanceTable <- rbind(c(10,10,9),c(10,9,10),c(9,10,10),c(9,9,10),c(9,10,9),c(10,9,9),
c(10,10,7),c(10,7,10),c(7,10,10),c(9,9,17),c(9,17,9),c(17,9,9),

c(7,10,17),c(10,17,7),c(17,7,10),c(7,17,10),c(17,10,7),c(10,7,17),
c(7,9,17),c(9,17,7),c(17,7,9),c(7,17,9),c(17,9,7),c(9,7,17))

76 SRMPInferenceFixedProfilesNumber

lexicographicOrder <- c(2,1,3)

criteriaMinMax <- c("max","max","max")

rownames(performanceTable) <- c("a1","a2","a3","a4","a5","a6","a7","a8","a9","a10","a11","a12",
"a13","a14","a15","a16","a17","a18","a19","a20","a21","a22",

"a23","a24")

colnames(performanceTable) <- c("c1","c2","c3")

names(criteriaMinMax) <- colnames(performanceTable)

preferencePairs <- matrix(c("a16","a13","a3","a14","a17","a1","a18","a15","a2","a11","a5",
"a10","a4","a12","a13","a3","a14","a17","a1","a18","a15","a2",

"a11","a5","a10","a4","a12","a6"),14,2)
indifferencePairs <- matrix(c("a3","a1","a2","a11","a11","a20","a10","a10","a19","a12","a12",

"a21","a9","a7","a8","a20","a22","a22","a19","a24","a24","a21",
"a23","a23"),12,2)

result<-SRMPInferenceFixedLexicographicOrder(performanceTable, criteriaMinMax,
lexicographicOrder, preferencePairs,
indifferencePairs, alternativesIDs =

c("a1","a3","a7","a9","a13","a14","a16","a17"))

SRMPInferenceFixedProfilesNumber

Exact inference of an SRMP model given the number of reference pro-
files

Description

Exact inference approach from pairwise comparisons of alternatives for the SRMP ranking model.
This method outputs an SRMP model that is as consistent as possible with the provided pairwise
comparisons (i.e. the model - and the lexicographic order of the reference profiles - that maximizes
the number of fulfilled pairwise comparisons). The number of reference profiles is fixed and needs
to be provided.

Usage

SRMPInferenceFixedProfilesNumber(performanceTable, criteriaMinMax, profilesNumber,
preferencePairs, indifferencePairs = NULL,
alternativesIDs = NULL, criteriaIDs = NULL,
timeLimit = NULL)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

SRMPInferenceFixedProfilesNumber 77

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

profilesNumber A strictly pozitive numerical value which gives the number of reference profiles
in the sought SRMP model.

preferencePairs

A two column matrix containing on each row a pair of alternative names where
the first alternative is considered to be strictly preferred to the second.

indifferencePairs

A two column matrix containing on each row a pair of alternative names the two
alternatives are considered to indifferent with respect to each other.

alternativesIDs

Vector containing IDs of alternatives, according to which the datashould be fil-
tered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

timeLimit Allows to fix a time limit of the execution, in seconds. By default NULL (which
corresponds to no time limit).

Value

The function returns a list containing:

criteriaWeights

The inferred criteria weights.
referenceProfiles

The inferred reference profiles.
lexicographicOrder

The inferred lexicographic order of the profiles.

fitness The percentage (0 to 1) of fulfilled pair-wise relations.

solverStatus The solver status as given by glpk.
humanReadableStatus

A description of the solver status.

References

A-L. OLTEANU, V. MOUSSEAU, W. OUERDANE, A. ROLLAND, Y. ZHENG, Preference Elic-
itation for a Ranking Method based on Multiple Reference Profiles, forthcoming 2018.

Examples

performanceTable <- rbind(c(10,10,9),c(10,9,10),c(9,10,10),c(9,9,10),c(9,10,9),c(10,9,9),
c(10,10,7),c(10,7,10),c(7,10,10),c(9,9,17),c(9,17,9),c(17,9,9),

c(7,10,17),c(10,17,7),c(17,7,10),c(7,17,10),c(17,10,7),c(10,7,17),
c(7,9,17),c(9,17,7),c(17,7,9),c(7,17,9),c(17,9,7),c(9,7,17))

criteriaMinMax <- c("max","max","max")

78 SRMPInferenceNoInconsist

rownames(performanceTable) <- c("a1","a2","a3","a4","a5","a6","a7","a8","a9","a10","a11","a12",
"a13","a14","a15","a16","a17","a18","a19","a20","a21","a22",

"a23","a24")

colnames(performanceTable) <- c("c1","c2","c3")

names(criteriaMinMax) <- colnames(performanceTable)

preferencePairs <- matrix(c("a16","a13","a3","a14","a17","a1","a18","a15","a2","a11","a5",
"a10","a4","a12","a13","a3","a14","a17","a1","a18","a15","a2",

"a11","a5","a10","a4","a12","a6"),14,2)
indifferencePairs <- matrix(c("a3","a1","a2","a11","a11","a20","a10","a10","a19","a12","a12",

"a21","a9","a7","a8","a20","a22","a22","a19","a24","a24","a21",
"a23","a23"),12,2)

result<-SRMPInferenceFixedProfilesNumber(performanceTable, criteriaMinMax, 3, preferencePairs,
indifferencePairs, alternativesIDs = c("a1","a3",
"a7","a9","a13","a14","a15","a16","a17","a18"))

SRMPInferenceNoInconsist

Exact inference of an SRMP model given a maximum number of refer-
ence profiles - no inconsistencies

Description

Exact inference approach from pairwise comparisons of alternatives for the SRMP ranking model.
This method only outputs a result when an SRMP model consistent with the provided pairwise
comparisons exists. The method will search for a model with the minimum possible number of
profiles up to a given maximum value. If such a model exists, this method is significantly faster
than the one which handles inconsistencies.

Usage

SRMPInferenceNoInconsist(performanceTable, criteriaMinMax, maxProfilesNumber,
preferencePairs, indifferencePairs = NULL,
alternativesIDs = NULL, criteriaIDs = NULL,
timeLimit = NULL)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

SRMPInferenceNoInconsist 79

maxProfilesNumber

A strictly pozitive numerical value which gives the highest number of reference
profiles the sought SRMP model should have.

preferencePairs

A two column matrix containing on each row a pair of alternative names where
the first alternative is considered to be strictly preferred to the second.

indifferencePairs

A two column matrix containing on each row a pair of alternative names the two
alternatives are considered to indifferent with respect to each other.

alternativesIDs

Vector containing IDs of alternatives, according to which the datashould be fil-
tered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

timeLimit Allows to fix a time limit of the execution, in seconds. By default NULL (which
corresponds to no time limit).

Value

The function returns a list containing:

criteriaWeights

The inferred criteria weights.
referenceProfilesNumber

The inferred reference profiles number.
referenceProfiles

The inferred reference profiles.
lexicographicOrder

The inferred lexicographic order of the profiles.

solverStatus The solver status as given by glpk.
humanReadableStatus

A description of the solver status.

References

A-L. OLTEANU, V. MOUSSEAU, W. OUERDANE, A. ROLLAND, Y. ZHENG, Preference Elic-
itation for a Ranking Method based on Multiple Reference Profiles, forthcoming 2018.

Examples

performanceTable <- rbind(c(10,10,9),c(10,9,10),c(9,10,10),c(9,9,10),c(9,10,9),c(10,9,9),
c(10,10,7),c(10,7,10),c(7,10,10),c(9,9,17),c(9,17,9),c(17,9,9),

c(7,10,17),c(10,17,7),c(17,7,10),c(7,17,10),c(17,10,7),c(10,7,17),
c(7,9,17),c(9,17,7),c(17,7,9),c(7,17,9),c(17,9,7),c(9,7,17))

criteriaMinMax <- c("max","max","max")

rownames(performanceTable) <- c("a1","a2","a3","a4","a5","a6","a7","a8","a9","a10","a11","a12",
"a13","a14","a15","a16","a17","a18","a19","a20","a21","a22",

80 SRMPInferenceNoInconsistFixedLexicographicOrder

"a23","a24")

colnames(performanceTable) <- c("c1","c2","c3")

names(criteriaMinMax) <- colnames(performanceTable)

preferencePairs <- matrix(c("a16","a13","a3","a14","a17","a1","a18","a15","a2","a11","a5",
"a10","a4","a12","a13","a3","a14","a17","a1","a18","a15","a2",

"a11","a5","a10","a4","a12","a6"),14,2)
indifferencePairs <- matrix(c("a3","a1","a2","a11","a11","a20","a10","a10","a19","a12","a12",

"a21","a9","a7","a8","a20","a22","a22","a19","a24","a24","a21",
"a23","a23"),12,2)

result<-SRMPInferenceNoInconsist(performanceTable, criteriaMinMax, 3, preferencePairs,
indifferencePairs, alternativesIDs = c("a1","a2","a3","a4",

"a5","a6","a7","a8","a10","a11","a12","a14","a16","a17","a18",
"a19","a20","a21","a23","a24"))

SRMPInferenceNoInconsistFixedLexicographicOrder

Exact inference of an SRMP model given the lexicographic order of
the profiles - no inconsistencies

Description

Exact inference approach from pairwise comparisons of alternatives for the SRMP ranking model.
This method only outputs a result when an SRMP model consistent with the provided pairwise
comparisons exists. The number of reference profiles and their lexicographic order is fixed. If such
a model exists, this method is significantly faster than the one which handles inconsistencies.

Usage

SRMPInferenceNoInconsistFixedLexicographicOrder(performanceTable, criteriaMinMax,
lexicographicOrder, preferencePairs,

indifferencePairs = NULL,
alternativesIDs = NULL,
criteriaIDs = NULL,
timeLimit = NULL)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

SRMPInferenceNoInconsistFixedLexicographicOrder 81

lexicographicOrder

A vector containing the indexes of the reference profiles in a given order. The
number of reference profiles to be used is derrived implicitly from the size of
this vector. The elements of this vector need to be a permutation of the indices
from 1 to its size.

preferencePairs

A two column matrix containing on each row a pair of alternative names where
the first alternative is considered to be strictly preferred to the second.

indifferencePairs

A two column matrix containing on each row a pair of alternative names the two
alternatives are considered to indifferent with respect to each other.

alternativesIDs

Vector containing IDs of alternatives, according to which the datashould be fil-
tered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

timeLimit Allows to fix a time limit of the execution, in seconds. By default NULL (which
corresponds to no time limit).

Value

The function returns a list containing:

criteriaWeights

The inferred criteria weights.
referenceProfiles

The inferred reference profiles.

solverStatus The solver status as given by glpk.
humanReadableStatus

A description of the solver status.

References

A-L. OLTEANU, V. MOUSSEAU, W. OUERDANE, A. ROLLAND, Y. ZHENG, Preference Elic-
itation for a Ranking Method based on Multiple Reference Profiles, forthcoming 2018.

Examples

the performance table

performanceTable <- rbind(c(10,10,9),c(10,9,10),c(9,10,10),c(9,9,10),c(9,10,9),c(10,9,9),
c(10,10,7),c(10,7,10),c(7,10,10),c(9,9,17),c(9,17,9),c(17,9,9),

c(7,10,17),c(10,17,7),c(17,7,10),c(7,17,10),c(17,10,7),c(10,7,17),
c(7,9,17),c(9,17,7),c(17,7,9),c(7,17,9),c(17,9,7),c(9,7,17))

lexicographicOrder <- c(2,1,3)

criteriaMinMax <- c("max","max","max")

rownames(performanceTable) <- c("a1","a2","a3","a4","a5","a6","a7","a8","a9","a10","a11","a12",

82 SRMPInferenceNoInconsistFixedProfilesNumber

"a13","a14","a15","a16","a17","a18","a19","a20","a21","a22",
"a23","a24")

colnames(performanceTable) <- c("c1","c2","c3")

names(criteriaMinMax) <- colnames(performanceTable)

preferencePairs <- matrix(c("a16","a13","a3","a14","a17","a1","a18","a15","a2","a11","a5",
"a10","a4","a12","a13","a3","a14","a17","a1","a18","a15","a2",

"a11","a5","a10","a4","a12","a6"),14,2)
indifferencePairs <- matrix(c("a3","a1","a2","a11","a11","a20","a10","a10","a19","a12","a12",

"a21","a9","a7","a8","a20","a22","a22","a19","a24","a24","a21",
"a23","a23"),12,2)

result<-SRMPInferenceNoInconsistFixedLexicographicOrder(performanceTable, criteriaMinMax,
lexicographicOrder, preferencePairs,
indifferencePairs, alternativesIDs =

c("a1","a2","a3","a4","a5","a6","a7",
"a8","a10","a11","a12","a14","a16",
"a17","a18","a19","a20","a21","a23",

"a24"))

SRMPInferenceNoInconsistFixedProfilesNumber

Exact inference of an SRMP model given the number of reference pro-
files - no inconsistencies

Description

Exact inference approach from pairwise comparisons of alternatives for the SRMP ranking model.
This method only outputs a result when an SRMP model consistent with the provided pairwise
comparisons exists. The number of reference profiles is fixed and need to be provided. If such a
model exists, this method is significantly faster than the one which handles inconsistencies.

Usage

SRMPInferenceNoInconsistFixedProfilesNumber(performanceTable, criteriaMinMax,
profilesNumber, preferencePairs,
indifferencePairs = NULL,

alternativesIDs = NULL, criteriaIDs = NULL,
timeLimit = NULL)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

SRMPInferenceNoInconsistFixedProfilesNumber 83

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

profilesNumber A strictly pozitive numerical value which gives the number of reference profiles
in the sought SRMP model.

preferencePairs

A two column matrix containing on each row a pair of alternative names where
the first alternative is considered to be strictly preferred to the second.

indifferencePairs

A two column matrix containing on each row a pair of alternative names the two
alternatives are considered to indifferent with respect to each other.

alternativesIDs

Vector containing IDs of alternatives, according to which the datashould be fil-
tered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

timeLimit Allows to fix a time limit of the execution, in seconds. By default NULL (which
corresponds to no time limit).

Value

The function returns a list containing:

criteriaWeights

The inferred criteria weights.
referenceProfiles

The inferred reference profiles.
lexicographicOrder

The inferred lexicographic order of the profiles.

solverStatus The solver status as given by glpk.
humanReadableStatus

A description of the solver status.

References

A-L. OLTEANU, V. MOUSSEAU, W. OUERDANE, A. ROLLAND, Y. ZHENG, Preference Elic-
itation for a Ranking Method based on Multiple Reference Profiles, forthcoming 2018.

Examples

performanceTable <- rbind(c(10,10,9),c(10,9,10),c(9,10,10),c(9,9,10),c(9,10,9),c(10,9,9),
c(10,10,7),c(10,7,10),c(7,10,10),c(9,9,17),c(9,17,9),c(17,9,9),

c(7,10,17),c(10,17,7),c(17,7,10),c(7,17,10),c(17,10,7),c(10,7,17),
c(7,9,17),c(9,17,7),c(17,7,9),c(7,17,9),c(17,9,7),c(9,7,17))

criteriaMinMax <- c("max","max","max")

rownames(performanceTable) <- c("a1","a2","a3","a4","a5","a6","a7","a8","a9","a10","a11","a12",
"a13","a14","a15","a16","a17","a18","a19","a20","a21","a22",

84 SURE

"a23","a24")

colnames(performanceTable) <- c("c1","c2","c3")

names(criteriaMinMax) <- colnames(performanceTable)

preferencePairs <- matrix(c("a16","a13","a3","a14","a17","a1","a18","a15","a2","a11","a5",
"a10","a4","a12","a13","a3","a14","a17","a1","a18","a15","a2",

"a11","a5","a10","a4","a12","a6"),14,2)
indifferencePairs <- matrix(c("a3","a1","a2","a11","a11","a20","a10","a10","a19","a12","a12",

"a21","a9","a7","a8","a20","a22","a22","a19","a24","a24","a21",
"a23","a23"),12,2)

result<-SRMPInferenceNoInconsistFixedProfilesNumber(performanceTable, criteriaMinMax, 3,
preferencePairs, indifferencePairs,

alternativesIDs = c("a1","a2","a3","a4",
"a5","a6","a7","a8","a10","a11","a12",

"a14","a16","a17","a18","a19","a20","a21",
"a23","a24"))

SURE Simulated Uncertainty Range Evaluations (SURE)

Description

SURE is a multi-criteria decision analysis method which was developed by Richard Hodgett and
Sajid Siraj. More details on the method are available in https://doi.org/10.1016/j.eswa.2018.08.048

Usage

SURE(performanceTableMin,
performanceTable,
performanceTableMax,
criteriaWeights,
criteriaMinMax,
alternativesIDs = NULL,
criteriaIDs = NULL,

NoOfSimulations = 100000)

Arguments

performanceTableMin

Matrix or data frame containing the minimum performance table. Each column
corresponds to an alternative, and each row to a criterion. Columns (resp. rows)
must be named according to the IDs of the alternatives (resp. criteria).

performanceTable

Matrix or data frame containing the most likely performance table. Each column
corresponds to an alternative, and each row to a criterion. Columns (resp. rows)
must be named according to the IDs of the alternatives (resp. criteria).

SURE 85

performanceTableMax

Matrix or data frame containing the maximum performance table. Each column
corresponds to an alternative, and each row to a criterion. Columns (resp. rows)
must be named according to the IDs of the alternatives (resp. criteria).

criteriaWeights

Vector containing the weights of the criteria. The elements are named according
to the IDs of the criteria.

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

alternativesIDs

Vector containing IDs of alternatives, according to which the data should be
filtered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.
NoOfSimulations

Integer stating the number of Simulations to use.

Value

The function returns an element of type SURE which contains the SURE simulated scores for each
alternative.

References

Richard E. Hodgett, Sajid Siraj (2019). SURE: A method for decision-making under uncertainty.
Expert Systems with Applications, Volume 115, 684-694.

Examples

performanceTableMin <- t(matrix(c(78,87,79,19,8,68,74,8,90,89,74.5,9,20,81,30),
nrow=3,ncol=5, byrow=TRUE))

performanceTable <- t(matrix(c(80,87,86,19,8,70,74,10,90,89,75,9,33,82,30),
nrow=3,ncol=5, byrow=TRUE))

performanceTableMax <- t(matrix(c(81,87,95,19,8,72,74,15,90,89,75.5,9,36,84,30),
nrow=3,ncol=5, byrow=TRUE))

row.names(performanceTable) <- c("Yield","Toxicity","Cost","Separation","Odour")
colnames(performanceTable) <- c("Route One","Route Two","Route Three")
row.names(performanceTableMin) <- row.names(performanceTable)
colnames(performanceTableMin) <- colnames(performanceTable)
row.names(performanceTableMax) <- row.names(performanceTable)
colnames(performanceTableMax) <- colnames(performanceTable)

criteriaWeights <- c(0.339,0.077,0.434,0.127,0.023)
names(criteriaWeights) <- row.names(performanceTable)

criteriaMinMax <- c("max", "max", "max", "max", "max")
names(criteriaMinMax) <- row.names(performanceTable)

test1 <- SURE(performanceTableMin,

86 TOPSIS

performanceTable,
performanceTableMax,
criteriaWeights,
criteriaMinMax, NoOfSimulations = 101)

summary(test1)
plotSURE(test1)
plotSURE(test1, greyScale = TRUE, separate = TRUE)

test2 <- SURE(performanceTableMin,
performanceTable,
performanceTableMax,
criteriaWeights,
criteriaMinMax,
alternativesIDs = c("Route Two","Route Three"),
criteriaIDs = c("Yield","Toxicity","Separation"),
NoOfSimulations = 101)

summary(test2)
plotSURE(test2)
plotSURE(test2, greyScale = TRUE, separate = TRUE)

TOPSIS Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS) method

Description

TOPSIS is a multi-criteria decision analysis method which was originally developed by Hwang and
Yoon in 1981.

Usage

TOPSIS(performanceTable,
criteriaWeights,
criteriaMinMax,
positiveIdealSolutions = NULL,
negativeIdealSolutions = NULL,
alternativesIDs = NULL,
criteriaIDs = NULL)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

TOPSIS 87

criteriaWeights

Vector containing the weights of the criteria. The elements are named according
to the IDs of the criteria.

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

positiveIdealSolutions

Vector containing the positive ideal solutions for each criteria. The elements are
named according to the IDs of the criteria.

negativeIdealSolutions

Vector containing the negative ideal solutions for each criteria. The elements are
named according to the IDs of the criteria.

alternativesIDs

Vector containing IDs of alternatives, according to which the data should be
filtered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

Value

The function returns a vector containing the TOPSIS score for each alternative.

References

Hwang, C.L.; Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications.
New York: Springer-Verlag. http://hodgett.co.uk/topsis-in-excel/

Examples

performanceTable <- matrix(c(5490,51.4,8.5,285,6500,70.6,7,
288,6489,54.3,7.5,290),
nrow=3,
ncol=4,
byrow=TRUE)

row.names(performanceTable) <- c("Corsa","Clio","Fiesta")

colnames(performanceTable) <- c("Purchase Price","Economy",
"Aesthetics","Boot Capacity")

weights <- c(0.35,0.25,0.25,0.15)

criteriaMinMax <- c("min", "max", "max", "max")

positiveIdealSolutions <- c(0.179573776, 0.171636015, 0.159499658, 0.087302767)
negativeIdealSolutions <- c(0.212610118, 0.124958799, 0.131352659, 0.085797547)

names(weights) <- colnames(performanceTable)
names(criteriaMinMax) <- colnames(performanceTable)
names(positiveIdealSolutions) <- colnames(performanceTable)
names(negativeIdealSolutions) <- colnames(performanceTable)

88 UTA

overall1 <- TOPSIS(performanceTable, weights, criteriaMinMax)

overall2 <- TOPSIS(performanceTable,
weights,
criteriaMinMax,
positiveIdealSolutions,
negativeIdealSolutions)

overall3 <- TOPSIS(performanceTable,
weights,
criteriaMinMax,
alternativesIDs = c("Corsa","Clio"),
criteriaIDs = c("Purchase Price","Economy","Aesthetics"))

overall4 <- TOPSIS(performanceTable,
weights,
criteriaMinMax,
positiveIdealSolutions,
negativeIdealSolutions,
alternativesIDs = c("Corsa","Clio"),
criteriaIDs = c("Purchase Price","Economy","Aesthetics"))

UTA UTA method to elicit value functions.

Description

Elicits value functions from a ranking of alternatives, according to the UTA method.

Usage

UTA(performanceTable, criteriaMinMax,
criteriaNumberOfBreakPoints, epsilon,
alternativesRanks = NULL,
alternativesPreferences = NULL,
alternativesIndifferences = NULL,
criteriaLBs=NULL, criteriaUBs=NULL,
alternativesIDs = NULL, criteriaIDs = NULL,
kPostOptimality = NULL)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

UTA 89

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

criteriaNumberOfBreakPoints

Vector containing the number of breakpoints of the piecewise linear value func-
tions to be determined. Minimum 2. The elements are named according to the
IDs of the criteria.

epsilon Numeric value containing the minimal difference in value between two consec-
utive alternatives in the final ranking.

alternativesRanks

Optional vector containing the ranks of the alternatives. The elements are named
according to the IDs of the alternatives. If not present, then at least one of
alternativesPreferences or alternativesIndifferences should be given.

alternativesPreferences

Optional matrix containing the preference constraints on the alternatives. Each
line of the matrix corresponds to a constraint of the type alternative a is strictly
preferred to alternative b. If not present, then either alternativesRanks or alter-
nativesIndifferences should be given.

alternativesIndifferences

Optional matrix containing the indifference constraints on the alternatives. Each
line of the matrix corresponds to a constraint of the type alternative a is indif-
ferent to alternative b. If not present, then either alternativesRanks or alterna-
tivesPreferences should be given.

criteriaLBs Vector containing the lower bounds of the criteria to be considered for the elic-
itation of the value functions. If not specified, the lower bounds present in the
performance table are taken.

criteriaUBs Vector containing the upper bounds of the criteria to be considered for the elic-
itation of the value functions. If not specified, the upper bounds present in the
performance table are taken.

alternativesIDs

Vector containing IDs of alternatives, according to which the datashould be fil-
tered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.
kPostOptimality

A small positive threshold used during the postoptimality analysis (see article on
UTA by Siskos and Lagreze in EJOR, 1982). If not specified, no postoptimality
analysis is performed.

Value

The function returns a list structured as follows :

optimum The value of the objective function.

valueFunctions A list containing the value functions which have been determined. Each value
function is defined by a matrix of breakpoints, where the first row corresponds
to the abscissa (row labelled "x") and where the second row corresponds to the
ordinate (row labelled "y").

90 UTA

overallValues A vector of the overall values of the input alternatives.

ranks A vector of the ranks of the alternatives obtained via the elicited value functions.
Ties method = "min".

Kendall Kendall’s tau between the input ranking and the one obtained via the elicited
value functions. NULL if no input ranking is given but alternativesPreferences
or alternativesIndifferences.

errors A vector of the errors (sigma) which have to be added to the overall values of
the alternatives in order to respect the input ranking.

minimumWeightsPO

In case a post-optimality analysis is performed, the minimal weight of each
criterion, else NULL.

maximumWeightsPO

In case a post-optimality analysis is performed, the maximal weight of each
criterion, else NULL.

averageValueFunctionsPO

In case a post-optimality analysis is performed, average value functions respect-
ing the input ranking, else NULL.

References

E. Jacquet-Lagreze, J. Siskos, Assessing a set of additive utility functions for multicriteria decision-
making, the UTA method, European Journal of Operational Research, Volume 10, Issue 2, 151–164,
June 1982.

Examples

the separation threshold

epsilon <-0.05

the performance table

performanceTable <- rbind(
c(3,10,1),
c(4,20,2),
c(2,20,0),
c(6,40,0),
c(30,30,3))

rownames(performanceTable) <- c("RER","METRO1","METRO2","BUS","TAXI")

colnames(performanceTable) <- c("Price","Time","Comfort")

ranks of the alternatives

alternativesRanks <- c(1,2,2,3,4)

names(alternativesRanks) <- row.names(performanceTable)

criteria to minimize or maximize

UTA 91

criteriaMinMax <- c("min","min","max")

names(criteriaMinMax) <- colnames(performanceTable)

number of break points for each criterion

criteriaNumberOfBreakPoints <- c(3,4,4)

names(criteriaNumberOfBreakPoints) <- colnames(performanceTable)

x<-UTA(performanceTable, criteriaMinMax,
criteriaNumberOfBreakPoints, epsilon,
alternativesRanks = alternativesRanks)

plot the value functions obtained

plotPiecewiseLinearValueFunctions(x$valueFunctions)

apply the value functions on the original performance table

transformedPerformanceTable <- applyPiecewiseLinearValueFunctionsOnPerformanceTable(
x$valueFunctions,
performanceTable)

calculate the overall score of each alternative

weightedSum(transformedPerformanceTable,c(1,1,1))

--
ranking some cars (from original article on UTA by Siskos and Lagreze, 1982)

the separation threshold

epsilon <-0.01

the performance table

performanceTable <- rbind(
c(173, 11.4, 10.01, 10, 7.88, 49500),
c(176, 12.3, 10.48, 11, 7.96, 46700),
c(142, 8.2, 7.30, 5, 5.65, 32100),
c(148, 10.5, 9.61, 7, 6.15, 39150),
c(178, 14.5, 11.05, 13, 8.06, 64700),
c(180, 13.6, 10.40, 13, 8.47, 75700),
c(182, 12.7, 12.26, 11, 7.81, 68593),
c(145, 14.3, 12.95, 11, 8.38, 55000),
c(161, 8.6, 8.42, 7, 5.11, 35200),
c(117, 7.2, 6.75, 3, 5.81, 24800)
)

rownames(performanceTable) <- c(
"Peugeot 505 GR",

92 UTA

"Opel Record 2000 LS",
"Citroen Visa Super E",
"VW Golf 1300 GLS",
"Citroen CX 2400 Pallas",
"Mercedes 230",
"BMW 520",
"Volvo 244 DL",
"Peugeot 104 ZS",
"Citroen Dyane")

colnames(performanceTable) <- c(
"MaximalSpeed",
"ConsumptionTown",
"Consumption120kmh",
"HP",
"Space",
"Price")

ranks of the alternatives

alternativesRanks <- c(1,2,3,4,5,6,7,8,9,10)

names(alternativesRanks) <- row.names(performanceTable)

criteria to minimize or maximize

criteriaMinMax <- c("max","min","min","max","max","min")

names(criteriaMinMax) <- colnames(performanceTable)

number of break points for each criterion

criteriaNumberOfBreakPoints <- c(5,4,4,5,4,5)

names(criteriaNumberOfBreakPoints) <- colnames(performanceTable)

lower bounds of the criteria for the determination of value functions

criteriaLBs=c(110,7,6,3,5,20000)

names(criteriaLBs) <- colnames(performanceTable)

upper bounds of the criteria for the determination of value functions

criteriaUBs=c(190,15,13,13,9,80000)

names(criteriaUBs) <- colnames(performanceTable)

x<-UTA(performanceTable, criteriaMinMax,
criteriaNumberOfBreakPoints, epsilon,
alternativesRanks = alternativesRanks,
criteriaLBs = criteriaLBs, criteriaUBs = criteriaUBs)

UTA 93

plot the value functions obtained

plotPiecewiseLinearValueFunctions(x$valueFunctions)

apply the value functions on the original performance table

transformedPerformanceTable <- applyPiecewiseLinearValueFunctionsOnPerformanceTable(
x$valueFunctions,
performanceTable)

calculate the overall score of each alternative

weights<-c(1,1,1,1,1,1)

names(weights)<-colnames(performanceTable)

weightedSum(transformedPerformanceTable,c(1,1,1,1,1,1))

the same analysis with less extreme value functions
from the post-optimality analysis

x<-UTA(performanceTable, criteriaMinMax,
criteriaNumberOfBreakPoints, epsilon,
alternativesRanks = alternativesRanks,
criteriaLBs = criteriaLBs,
criteriaUBs = criteriaUBs,
kPostOptimality = 0.01)

plot the value functions obtained

plotPiecewiseLinearValueFunctions(x$averageValueFunctionsPO)

apply the value functions on the original performance table

transformedPerformanceTable <- applyPiecewiseLinearValueFunctionsOnPerformanceTable(
x$averageValueFunctionsPO,
performanceTable)

calculate the overall score of each alternative

weights<-c(1,1,1,1,1,1)

names(weights)<-colnames(performanceTable)

weightedSum(transformedPerformanceTable,c(1,1,1,1,1,1))

--
Let us consider only 2 criteria : Price and MaximalSpeed. What happens ?

x<-UTA(performanceTable, criteriaMinMax,
criteriaNumberOfBreakPoints, epsilon,

94 UTADIS

alternativesRanks = alternativesRanks,
criteriaLBs = criteriaLBs, criteriaUBs = criteriaUBs,
criteriaIDs = c("MaximalSpeed","Price"))

plot the value functions obtained

plotPiecewiseLinearValueFunctions(x$valueFunctions,
criteriaIDs = c("MaximalSpeed","Price"))

apply the value functions on the original performance table

transformedPerformanceTable <- applyPiecewiseLinearValueFunctionsOnPerformanceTable(
x$valueFunctions,
performanceTable,
criteriaIDs = c("MaximalSpeed","Price")
)

calculate the overall score of each alternative

weights<-c(1,1,1,1,1,1)

names(weights)<-colnames(performanceTable)

weightedSum(transformedPerformanceTable,
weights, criteriaIDs = c("MaximalSpeed","Price"))

--
An example without alternativesRanks, but with alternativesPreferences
and alternativesIndifferences

alternativesPreferences <- rbind(c("Peugeot 505 GR","Opel Record 2000 LS"),
c("Opel Record 2000 LS","Citroen Visa Super E"))

alternativesIndifferences <- rbind(c("Peugeot 104 ZS","Citroen Dyane"))

x<-UTA(performanceTable, criteriaMinMax,
criteriaNumberOfBreakPoints, epsilon = 0.1,
alternativesPreferences = alternativesPreferences,
alternativesIndifferences = alternativesIndifferences,
criteriaLBs = criteriaLBs, criteriaUBs = criteriaUBs
)

UTADIS UTADIS method to elicit value functions in view of sorting alternatives
in ordered categories

Description

Elicits value functions from assignment examples, according to the UTADIS method.

UTADIS 95

Usage

UTADIS(performanceTable, criteriaMinMax,
criteriaNumberOfBreakPoints,
alternativesAssignments, categoriesRanks, epsilon,
criteriaLBs=NULL, criteriaUBs=NULL,
alternativesIDs = NULL, criteriaIDs = NULL,
categoriesIDs = NULL)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

criteriaNumberOfBreakPoints

Vector containing the number of breakpoints of the piecewise linear value func-
tions to be determined. Minimum 2. The elements are named according to the
IDs of the criteria.

alternativesAssignments

Vector containing the assignments of the alternatives to categories. Minimum
2 categories. The elements of the vector are named according to the IDs of the
alternatives.

categoriesRanks

Vector containing the ranks of the categories. Minimum 2 categories. The ele-
ments of the vector are named according to the IDs of the categories.

epsilon Numeric value containing the minimal difference in value between the upper
bound of a category and an alternative of that category.

criteriaLBs Vector containing the lower bounds of the criteria to be considered for the elic-
itation of the value functions. If not specified, the lower bounds present in the
performance table are taken.

criteriaUBs Vector containing the upper bounds of the criteria to be considered for the elic-
itation of the value functions. If not specified, the upper bounds present in the
performance table are taken.

alternativesIDs

Vector containing IDs of alternatives, according to which the datashould be fil-
tered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.

categoriesIDs Vector containing IDs of categories, according to which the data should be fil-
tered.

Value

The function returns a list structured as follows :

96 UTADIS

optimum The value of the objective function.

valueFunctions A list containing the value functions which have been determined. Each value
function is defined by a matrix of breakpoints, where the first row corresponds
to the abscissa (row labelled "x") and where the second row corresponds to the
ordinate (row labelled "y").

overallValues A vector of the overall values of the input alternatives.

categoriesLBs A vector containing the lower bounds of the considered categories.

errors A list containing the errors (sigmaPlus and sigmaMinus) which have to be sub-
stracted and added to the overall values of the alternatives in order to respect the
input ranking.

References

J.M. Devaud, G. Groussaud, and E. Jacquet-Lagrèze, UTADIS : Une méthode de construction de
fonctions d’utilité additives rendant compte de jugements globaux, European Working Group on
Multicriteria Decision Aid, Bochum, 1980.

Examples

the separation threshold

epsilon <-0.05

the performance table

performanceTable <- rbind(
c(3,10,1),
c(4,20,2),
c(2,20,0),
c(6,40,0),
c(30,30,3))

rownames(performanceTable) <- c("RER","METRO1","METRO2","BUS","TAXI")

colnames(performanceTable) <- c("Price","Time","Comfort")

ranks of the alternatives

alternativesAssignments <- c("good","medium","medium","bad","bad")

names(alternativesAssignments) <- row.names(performanceTable)

criteria to minimize or maximize

criteriaMinMax <- c("min","min","max")

names(criteriaMinMax) <- colnames(performanceTable)

number of break points for each criterion

UTASTAR 97

criteriaNumberOfBreakPoints <- c(3,4,4)

names(criteriaNumberOfBreakPoints) <- colnames(performanceTable)

ranks of the categories

categoriesRanks <- c(1,2,3)

names(categoriesRanks) <- c("good","medium","bad")

x<-UTADIS(performanceTable, criteriaMinMax, criteriaNumberOfBreakPoints,
alternativesAssignments, categoriesRanks,0.1)

filtering out category "good" and assigment examples "RER" and "TAXI"

y<-UTADIS(performanceTable, criteriaMinMax, criteriaNumberOfBreakPoints,
alternativesAssignments, categoriesRanks,0.1,
categoriesIDs=c("medium","bad"),
alternativesIDs=c("METRO1","METRO2","BUS"))

working furthermore on only 2 criteria : "Comfort" and "Time"

z<-UTADIS(performanceTable, criteriaMinMax, criteriaNumberOfBreakPoints,
alternativesAssignments, categoriesRanks,0.1,
criteriaIDs=c("Comfort","Time"))

UTASTAR UTASTAR method to elicit value functions.

Description

Elicits value functions from a ranking of alternatives, according to the UTASTAR method.

Usage

UTASTAR(performanceTable, criteriaMinMax,
criteriaNumberOfBreakPoints, epsilon,
alternativesRanks = NULL,
alternativesPreferences = NULL,
alternativesIndifferences = NULL,
criteriaLBs=NULL, criteriaUBs=NULL,
alternativesIDs = NULL, criteriaIDs = NULL,
kPostOptimality = NULL)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

98 UTASTAR

criteriaMinMax Vector containing the preference direction on each of the criteria. "min" (resp.
"max") indicates that the criterion has to be minimized (maximized). The ele-
ments are named according to the IDs of the criteria.

criteriaNumberOfBreakPoints

Vector containing the number of breakpoints of the piecewise linear value func-
tions to be determined. Minimum 2. The elements are named according to the
IDs of the criteria.

epsilon Numeric value containing the minimal difference in value between two consec-
utive alternatives in the final ranking.

alternativesRanks

Optional vector containing the ranks of the alternatives. The elements are named
according to the IDs of the alternatives. If not present, then at least one of
alternativesPreferences or alternativesIndifferences should be given.

alternativesPreferences

Optional matrix containing the preference constraints on the alternatives. Each
line of the matrix corresponds to a constraint of the type alternative a is strictly
preferred to alternative b. If not present, then either alternativesRanks or alter-
nativesIndifferences should be given.

alternativesIndifferences

Optional matrix containing the indifference constraints on the alternatives. Each
line of the matrix corresponds to a constraint of the type alternative a is indif-
ferent to alternative b. If not present, then either alternativesRanks or alterna-
tivesPreferences should be given.

criteriaLBs Vector containing the lower bounds of the criteria to be considered for the elic-
itation of the value functions. If not specified, the lower bounds present in the
performance table are taken.

criteriaUBs Vector containing the upper bounds of the criteria to be considered for the elic-
itation of the value functions. If not specified, the upper bounds present in the
performance table are taken.

alternativesIDs

Vector containing IDs of alternatives, according to which the datashould be fil-
tered.

criteriaIDs Vector containing IDs of criteria, according to which the data should be filtered.
kPostOptimality

A small positive threshold used during the postoptimality analysis (see article on
UTA by Siskos and Lagreze in EJOR, 1982). If not specified, no postoptimality
analysis is performed.

Value

The function returns a list structured as follows :

optimum The value of the objective function.

valueFunctions A list containing the value functions which have been determined. Each value
function is defined by a matrix of breakpoints, where the first row corresponds
to the abscissa (row labelled "x") and where the second row corresponds to the
ordinate (row labelled "y").

UTASTAR 99

overallValues A vector of the overall values of the input alternatives.

ranks A vector of the ranks of the alternatives obtained via the elicited value functions.
Ties method = "min".

Kendall Kendall’s tau between the input ranking and the one obtained via the elicited
value functions.

errors A list containing the errors (sigmaPlus and sigmaMinus) which have to be sub-
stracted and added to the overall values of the alternatives in order to respect the
input ranking.

minimumWeightsPO

In case a post-optimality analysis is performed, the minimal weight of each
criterion, else NULL.

maximumWeightsPO

In case a post-optimality analysis is performed, the maximal weight of each
criterion, else NULL.

averageValueFunctionsPO

In case a post-optimality analysis is performed, average value functions respect-
ing the input ranking, else NULL.

References

Siskos, Y. and D. Yannacopoulos, UTASTAR: An ordinal regression method for building additive
value functions, Investigacao Operacional , 5 (1), 39–53, 1985.

Examples

the separation threshold

epsilon <-0.05

the performance table

performanceTable <- rbind(
c(3,10,1),
c(4,20,2),
c(2,20,0),
c(6,40,0),
c(30,30,3))

rownames(performanceTable) <- c("RER","METRO1","METRO2","BUS","TAXI")

colnames(performanceTable) <- c("Price","Time","Comfort")

ranks of the alternatives

alternativesRanks <- c(1,2,2,3,4)

names(alternativesRanks) <- row.names(performanceTable)

criteria to minimize or maximize

100 UTASTAR

criteriaMinMax <- c("min","min","max")

names(criteriaMinMax) <- colnames(performanceTable)

number of break points for each criterion

criteriaNumberOfBreakPoints <- c(3,4,4)

names(criteriaNumberOfBreakPoints) <- colnames(performanceTable)

x<-UTASTAR(performanceTable, criteriaMinMax,
criteriaNumberOfBreakPoints, epsilon,
alternativesRanks = alternativesRanks)

plot the value functions obtained

plotPiecewiseLinearValueFunctions(x$valueFunctions)

apply the value functions on the original performance table

transformedPerformanceTable <- applyPiecewiseLinearValueFunctionsOnPerformanceTable(
x$valueFunctions,
performanceTable)

calculate the overall score of each alternative

weightedSum(transformedPerformanceTable,c(1,1,1))

--
ranking some cars (from original article on UTA by Siskos and Lagreze, 1982)

the separation threshold

epsilon <-0.01

the performance table

performanceTable <- rbind(
c(173, 11.4, 10.01, 10, 7.88, 49500),
c(176, 12.3, 10.48, 11, 7.96, 46700),
c(142, 8.2, 7.30, 5, 5.65, 32100),
c(148, 10.5, 9.61, 7, 6.15, 39150),
c(178, 14.5, 11.05, 13, 8.06, 64700),
c(180, 13.6, 10.40, 13, 8.47, 75700),
c(182, 12.7, 12.26, 11, 7.81, 68593),
c(145, 14.3, 12.95, 11, 8.38, 55000),
c(161, 8.6, 8.42, 7, 5.11, 35200),
c(117, 7.2, 6.75, 3, 5.81, 24800)
)

rownames(performanceTable) <- c(
"Peugeot 505 GR",
"Opel Record 2000 LS",

UTASTAR 101

"Citroen Visa Super E",
"VW Golf 1300 GLS",
"Citroen CX 2400 Pallas",
"Mercedes 230",
"BMW 520",
"Volvo 244 DL",
"Peugeot 104 ZS",
"Citroen Dyane")

colnames(performanceTable) <- c(
"MaximalSpeed",
"ConsumptionTown",
"Consumption120kmh",
"HP",
"Space",
"Price")

ranks of the alternatives

alternativesRanks <- c(1,2,3,4,5,6,7,8,9,10)

names(alternativesRanks) <- row.names(performanceTable)

criteria to minimize or maximize

criteriaMinMax <- c("max","min","min","max","max","min")

names(criteriaMinMax) <- colnames(performanceTable)

number of break points for each criterion

criteriaNumberOfBreakPoints <- c(5,4,4,5,4,5)

names(criteriaNumberOfBreakPoints) <- colnames(performanceTable)

lower bounds of the criteria for the determination of value functions

criteriaLBs=c(110,7,6,3,5,20000)

names(criteriaLBs) <- colnames(performanceTable)

upper bounds of the criteria for the determination of value functions

criteriaUBs=c(190,15,13,13,9,80000)

names(criteriaUBs) <- colnames(performanceTable)

x<-UTASTAR(performanceTable, criteriaMinMax,
criteriaNumberOfBreakPoints, epsilon,
alternativesRanks = alternativesRanks,
criteriaLBs = criteriaLBs, criteriaUBs = criteriaUBs)

102 UTASTAR

plot the value functions obtained

plotPiecewiseLinearValueFunctions(x$valueFunctions)

apply the value functions on the original performance table

transformedPerformanceTable <- applyPiecewiseLinearValueFunctionsOnPerformanceTable(
x$valueFunctions,
performanceTable)

calculate the overall score of each alternative

weights<-c(1,1,1,1,1,1)

names(weights)<-colnames(performanceTable)

weightedSum(transformedPerformanceTable,c(1,1,1,1,1,1))

the same analysis with less extreme value functions
from the post-optimality analysis

x<-UTASTAR(performanceTable, criteriaMinMax,
criteriaNumberOfBreakPoints, epsilon,
alternativesRanks = alternativesRanks,
criteriaLBs = criteriaLBs,
criteriaUBs = criteriaUBs,
kPostOptimality = 0.01)

plot the value functions obtained

plotPiecewiseLinearValueFunctions(x$averageValueFunctionsPO)

apply the value functions on the original performance table

transformedPerformanceTable <- applyPiecewiseLinearValueFunctionsOnPerformanceTable(
x$averageValueFunctionsPO,
performanceTable)

calculate the overall score of each alternative

weights<-c(1,1,1,1,1,1)

names(weights)<-colnames(performanceTable)

weightedSum(transformedPerformanceTable,c(1,1,1,1,1,1))

--
Let us consider only 2 criteria : Price and MaximalSpeed. What happens ?

x<-UTASTAR(performanceTable, criteriaMinMax,
criteriaNumberOfBreakPoints, epsilon,
alternativesRanks = alternativesRanks,

weightedSum 103

criteriaLBs = criteriaLBs, criteriaUBs = criteriaUBs,
criteriaIDs = c("MaximalSpeed","Price"))

plot the value functions obtained

plotPiecewiseLinearValueFunctions(x$valueFunctions,
criteriaIDs = c("MaximalSpeed","Price"))

apply the value functions on the original performance table

transformedPerformanceTable <- applyPiecewiseLinearValueFunctionsOnPerformanceTable(
x$valueFunctions,
performanceTable,
criteriaIDs = c("MaximalSpeed","Price")
)

calculate the overall score of each alternative

weights<-c(1,1,1,1,1,1)

names(weights)<-colnames(performanceTable)

weightedSum(transformedPerformanceTable,
weights, criteriaIDs = c("MaximalSpeed","Price"))

--
An example without alternativesRanks, but with alternativesPreferences
and alternativesIndifferences

alternativesPreferences <- rbind(c("Peugeot 505 GR","Opel Record 2000 LS"),
c("Opel Record 2000 LS","Citroen Visa Super E"))

alternativesIndifferences <- rbind(c("Peugeot 104 ZS","Citroen Dyane"))

x<-UTASTAR(performanceTable, criteriaMinMax,
criteriaNumberOfBreakPoints, epsilon = 0.1,
alternativesPreferences = alternativesPreferences,
alternativesIndifferences = alternativesIndifferences,
criteriaLBs = criteriaLBs, criteriaUBs = criteriaUBs
)

weightedSum Weighted sum of evaluations of alternatives.

Description

Computes the weighted sum of the evaluations of alternatives, stored in a performance table, with
respect to a vector of criteria weights.

104 weightedSum

Usage

weightedSum(performanceTable, criteriaWeights,
alternativesIDs = NULL, criteriaIDs = NULL)

Arguments

performanceTable

Matrix or data frame containing the performance table. Each row corresponds
to an alternative, and each column to a criterion. Rows (resp. columns) must be
named according to the IDs of the alternatives (resp. criteria).

criteriaWeights

Vector containing the weights of the criteria. The elements are named according
to the IDs of the criteria.

alternativesIDs

Vector containing IDs of alternatives, according to which the performance table
should be filtered.

criteriaIDs Vector containing IDs of criteria, according to which the performance table
should be filtered.

Value

The function returns a vector containing the weighted sum of the alternatives with respect to the
criteria weights.

Examples

performanceTable <- matrix(runif(3*4), ncol=3)

row.names(performanceTable) <- c("x1","x2","x3","x4")

colnames(performanceTable) <- c("g1","g2","g3")

weights <- c(1,2,3)

names(weights) <- c("g1","g2","g3")

overall1 <- weightedSum(performanceTable, weights)

overall2 <- weightedSum(performanceTable, weights,
alternativesIDs <- c("x2","x3"), criteriaIDs <- c("g2","g3"))

Index

∗ methods
additiveValueFunctionElicitation,

3
applyPiecewiseLinearValueFunctionsOnPerformanceTable,

7
assignAlternativesToCategoriesByThresholds,

8
LPDMRSort, 12
LPDMRSortIdentifyIncompatibleAssignments,

16
LPDMRSortIdentifyUsedDictatorProfiles,

19
LPDMRSortIdentifyUsedVetoProfiles,

22
LPDMRSortInferenceApprox, 25
LPDMRSortInferenceExact, 27
MRSort, 32
MRSortIdentifyIncompatibleAssignments,

35
MRSortIdentifyUsedVetoProfiles, 37
MRSortInferenceApprox, 40
MRSortInferenceExact, 42
normalizePerformanceTable, 47
plotAlternativesValuesPreorder, 49
plotMRSortSortingProblem, 51
plotPiecewiseLinearValueFunctions,

53
plotRadarPerformanceTable, 54
SRMP, 64
SRMPInference, 66
SRMPInferenceApprox, 68
SRMPInferenceApproxFixedLexicographicOrder,

70
SRMPInferenceApproxFixedProfilesNumber,

72
SRMPInferenceFixedLexicographicOrder,

74
SRMPInferenceFixedProfilesNumber,

76

SRMPInferenceNoInconsist, 78
SRMPInferenceNoInconsistFixedLexicographicOrder,

80
SRMPInferenceNoInconsistFixedProfilesNumber,

82
UTA, 88
UTADIS, 94
UTASTAR, 97
weightedSum, 103

additiveValueFunctionElicitation, 3
AHP, 5
applyPiecewiseLinearValueFunctionsOnPerformanceTable,

7
assignAlternativesToCategoriesByThresholds,

8

ELECTRE3, 10
ELECTREIIIDistillation, 11

LPDMRSort, 12
LPDMRSortIdentifyIncompatibleAssignments,

16
LPDMRSortIdentifyUsedDictatorProfiles,

19
LPDMRSortIdentifyUsedVetoProfiles, 22
LPDMRSortInferenceApprox, 25
LPDMRSortInferenceExact, 27

MARE, 30
MRSort, 32
MRSortIdentifyIncompatibleAssignments,

35
MRSortIdentifyUsedVetoProfiles, 37
MRSortInferenceApprox, 40
MRSortInferenceExact, 42
MRSortInterval, 44

normalizePerformanceTable, 47

pairwiseConsistencyMeasures, 48

105

106 INDEX

plotAlternativesValuesPreorder, 49
plotMARE, 50
plotMRSortSortingProblem, 51
plotPiecewiseLinearValueFunctions, 53
plotRadarPerformanceTable, 54
plotSURE, 56
PROMETHEEI, 57
PROMETHEEII, 58
PROMETHEEOutrankingFlows, 60
PROMETHEEPreferenceIndices, 62

SRMP, 64
SRMPInference, 66
SRMPInferenceApprox, 68
SRMPInferenceApproxFixedLexicographicOrder,

70
SRMPInferenceApproxFixedProfilesNumber,

72
SRMPInferenceFixedLexicographicOrder,

74
SRMPInferenceFixedProfilesNumber, 76
SRMPInferenceNoInconsist, 78
SRMPInferenceNoInconsistFixedLexicographicOrder,

80
SRMPInferenceNoInconsistFixedProfilesNumber,

82
SURE, 84

TOPSIS, 86

UTA, 88
UTADIS, 94
UTASTAR, 97

weightedSum, 103

	additiveValueFunctionElicitation
	AHP
	applyPiecewiseLinearValueFunctionsOnPerformanceTable
	assignAlternativesToCategoriesByThresholds
	ELECTRE3
	ELECTREIIIDistillation
	LPDMRSort
	LPDMRSortIdentifyIncompatibleAssignments
	LPDMRSortIdentifyUsedDictatorProfiles
	LPDMRSortIdentifyUsedVetoProfiles
	LPDMRSortInferenceApprox
	LPDMRSortInferenceExact
	MARE
	MRSort
	MRSortIdentifyIncompatibleAssignments
	MRSortIdentifyUsedVetoProfiles
	MRSortInferenceApprox
	MRSortInferenceExact
	MRSortInterval
	normalizePerformanceTable
	pairwiseConsistencyMeasures
	plotAlternativesValuesPreorder
	plotMARE
	plotMRSortSortingProblem
	plotPiecewiseLinearValueFunctions
	plotRadarPerformanceTable
	plotSURE
	PROMETHEEI
	PROMETHEEII
	PROMETHEEOutrankingFlows
	PROMETHEEPreferenceIndices
	SRMP
	SRMPInference
	SRMPInferenceApprox
	SRMPInferenceApproxFixedLexicographicOrder
	SRMPInferenceApproxFixedProfilesNumber
	SRMPInferenceFixedLexicographicOrder
	SRMPInferenceFixedProfilesNumber
	SRMPInferenceNoInconsist
	SRMPInferenceNoInconsistFixedLexicographicOrder
	SRMPInferenceNoInconsistFixedProfilesNumber
	SURE
	TOPSIS
	UTA
	UTADIS
	UTASTAR
	weightedSum
	Index

